找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Linear Groups; An Account of the Gr Bertram A. F. Wehrfritz Book 1973 Springer-Verlag Berlin Heidelberg 1973 Abelian group.Finite.

[復(fù)制鏈接]
樓主: 清楚明確
21#
發(fā)表于 2025-3-25 04:45:49 | 只看該作者
Basic Concepts,main and will usually be either a field or ?). .. denotes the .-algebra of . × . matrices and GL(., .) the group of units of .. By definition a . is a subgroup of GL(., .) for some positive integer . and some (commutative) ..
22#
發(fā)表于 2025-3-25 08:13:42 | 只看該作者
23#
發(fā)表于 2025-3-25 13:36:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:16:29 | 只看該作者
-Groups and the Zariski Topology,Let . be the space of .row vectors over the field . and . [.,..., .], the polynomial ring over . in . indeterminates. A subset . of . is said to be . in . if there exists a subset . of . such that . is the set of zeros of ., that is if. If . is any subset of . let .(.) denote the set of zeros of S (in .). Note that .and ..
25#
發(fā)表于 2025-3-25 23:56:14 | 只看該作者
Supersoluble and Locally Supersoluble Linear Groups,This chapter consists mainly of an account of papers [69 a] and [69 b], although the order of our development will be somewhat different. The motivation of much of this work came from the following result, a generalization of 1.14.
26#
發(fā)表于 2025-3-26 02:35:40 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:23 | 只看該作者
years or so has been the increasing use of properties of infinite linear groups in the theory of (abstract) groups, although the story of infinite linear groups as such goes back to the early years of this century with the work of Burnside and Schur particularly. Infinite linear groups arise in gro
28#
發(fā)表于 2025-3-26 11:15:15 | 只看該作者
Finitely Generated Linear Groups, the properties of these groups in the following order: their residual properties (especially finite ones), their Frattini properties, their centrality properties, and finally their chief factors and maximal subgroups.
29#
發(fā)表于 2025-3-26 16:21:05 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤山市| 云龙县| 婺源县| 南江县| 甘德县| 多伦县| 天全县| 宜章县| 和顺县| 图木舒克市| 交城县| 遂溪县| 朝阳区| 东安县| 沙湾县| 三都| 福安市| 禄劝| 平遥县| 民县| 大姚县| 淳安县| 天柱县| 明水县| 天等县| 瑞丽市| 志丹县| 和林格尔县| 大宁县| 广昌县| 博罗县| 浦县| 白朗县| 蛟河市| 葵青区| 清丰县| 天全县| 老河口市| 天峻县| 娱乐| 北辰区|