找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Infinite Linear Groups; An Account of the Gr Bertram A. F. Wehrfritz Book 1973 Springer-Verlag Berlin Heidelberg 1973 Abelian group.Finite.

[復(fù)制鏈接]
樓主: 清楚明確
11#
發(fā)表于 2025-3-23 10:52:42 | 只看該作者
The Homomorphism Theorems,y free abelian group, but not every abelian group, has faithful representations of finite degree over some field. This raises two questions. Firstly, for which classes-of-groups ? are homomorphic images of linear ?-groups necessarily isomorphic to linear groups? Secondly, given an arbitrary linear g
12#
發(fā)表于 2025-3-23 16:33:54 | 只看該作者
The Jordan Decomposition and Splittable Linear Groups,. is unipotent if and only if all the eigenvalues of . are 1, which happens if and only if there exists an element g of GL(.) such that . is unitriangular. In this case . has infinite order if char . = 0 and is a .-element if char .>0.
13#
發(fā)表于 2025-3-23 21:19:42 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:45 | 只看該作者
15#
發(fā)表于 2025-3-24 06:13:30 | 只看該作者
16#
發(fā)表于 2025-3-24 07:21:54 | 只看該作者
A Localizing Technique and Applications,ues we have seldom used the linear structure of the matrix ring to accomplish this. The object of this chapter is to describe a general method for extending theorems from finitely generated linear groups to more general linear groups that relies heavily on the linearity. Although the fundamental res
17#
發(fā)表于 2025-3-24 11:08:32 | 只看該作者
Appendix on Algebraic Groups,sed subgroups of GL(., .). Our first aim is to give an account of these results, and in most cases also their proofs. In a number of places in this book we have skirted round some of these properties of algebraic groups and here and there we have come very close to using them. I hope that this chapt
18#
發(fā)表于 2025-3-24 18:25:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:56:51 | 只看該作者
https://doi.org/10.1007/978-3-642-87081-1Abelian group; Finite; Group theory; Groups; Groups of Matrices; Morphism; Unendliche lineare Gruppe; matri
20#
發(fā)表于 2025-3-25 02:40:17 | 只看該作者
978-3-642-87083-5Springer-Verlag Berlin Heidelberg 1973
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内黄县| 江口县| 阜宁县| 凭祥市| 高陵县| 鄂伦春自治旗| 志丹县| 湖南省| 乃东县| 武鸣县| 梨树县| 和林格尔县| 彰武县| 汨罗市| 体育| 闻喜县| 枣强县| 区。| 凉城县| 尚义县| 海宁市| 城口县| 呈贡县| 万载县| 玉环县| 石家庄市| 赤壁市| 保山市| 阿克| 米林县| 玉山县| 方正县| 宁武县| 金门县| 贞丰县| 秦皇岛市| 漳平市| 青田县| 蓬莱市| 兴宁市| 扶风县|