找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations; A Volume Dedicated t Daniel Alpay,Bernd Kirstein Book 2018 Spr

[復(fù)制鏈接]
樓主: FROM
31#
發(fā)表于 2025-3-27 01:02:44 | 只看該作者
Finite Rank Perturbations in Pontryagin Spaces and a Sturm–Liouville Problem with ,-rational Boundarensions of the spectral subspaces corresponding to open intervals in gaps of the essential spectrum differ at most by .+2.. This is a natural extension of a classical result on finite rank perturbations of selfadjoint operators in Hilbert spaces to the indefinite setting.With the help of an explicit
32#
發(fā)表于 2025-3-27 04:02:20 | 只看該作者
33#
發(fā)表于 2025-3-27 08:01:59 | 只看該作者
34#
發(fā)表于 2025-3-27 10:52:38 | 只看該作者
Rational , Carathéodory Functions and Central Non-negative Hermitian Measuresasures are intimately connected to central . Carathéodory functions. This enables us to prove an explicit representation of the nonstochastic spectral measure of an arbitrary multivariate autoregressive stationary sequence in terms of the covariance sequence.
35#
發(fā)表于 2025-3-27 14:21:32 | 只看該作者
36#
發(fā)表于 2025-3-27 19:50:38 | 只看該作者
37#
發(fā)表于 2025-3-28 01:42:08 | 只看該作者
An Addendum to a Paper by Li and Zhangositive semidefinite matrices. Slightly generalizing Li and Zhang’s proof we obtain a more general result under the assumption that all matrices on the principal diagonal are of the same size. Also, we answer a question asked by Marcus and Watkins in 1971.
38#
發(fā)表于 2025-3-28 03:39:01 | 只看該作者
39#
發(fā)表于 2025-3-28 08:00:36 | 只看該作者
40#
發(fā)表于 2025-3-28 14:16:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆尧县| 安新县| 英德市| 宜宾县| 西充县| 安图县| 富民县| 兴义市| 黄龙县| 晋州市| 剑川县| 北流市| 资兴市| 扬州市| 宕昌县| 万全县| 合阳县| 平乐县| 大同市| 赫章县| 沛县| 临汾市| 沙湾县| 嘉鱼县| 乐陵市| 塘沽区| 长顺县| 临安市| 桐乡市| 张掖市| 九台市| 阿坝县| 鄂托克前旗| 兰溪市| 龙陵县| 岳普湖县| 伊金霍洛旗| 台南市| 福州市| 黔西县| 汾西县|