找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations; A Volume Dedicated t Daniel Alpay,Bernd Kirstein Book 2018 Spr

[復(fù)制鏈接]
樓主: FROM
11#
發(fā)表于 2025-3-23 11:49:20 | 只看該作者
12#
發(fā)表于 2025-3-23 17:53:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:10:23 | 只看該作者
14#
發(fā)表于 2025-3-24 00:46:49 | 只看該作者
https://doi.org/10.1007/978-3-319-68849-7Schur analysis; differential equations; inverse problems; Mathematical physics; Interpolation theory; ind
15#
發(fā)表于 2025-3-24 05:21:30 | 只看該作者
Daniel Alpay,Bernd KirsteinCollects state-of-the-art papers on central domains in operator theory.Features several illustrations.Includes the full "Laudatio" of the celebration of Heinz Langer‘s honorary doctoral degree
16#
發(fā)表于 2025-3-24 10:36:26 | 只看該作者
17#
發(fā)表于 2025-3-24 12:23:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:10 | 只看該作者
On the Asymptotic Behaviour of the Zeros of the Solutions of a Functional-differential Equation withWe study the asymptotic behaviour of the solutions of a functionaldifferential equation with rescaling, the so-called pantograph equation. From this we derive asymptotic information about the zeros of these solutions.
19#
發(fā)表于 2025-3-24 21:48:43 | 只看該作者
Self-adjoint Boundary Conditions for the Prolate Spheroid Differential OperatorWe consider the formal prolate spheroid differential operator on a finite symmetric interval and describe all its self-adjoint boundary conditions. Only one of these boundary conditions corresponds to a self-adjoint differential operator which commute with the Fourier operator truncated on the considered finite symmetric interval.
20#
發(fā)表于 2025-3-25 01:47:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谢通门县| 阳江市| 江孜县| 萨嘎县| 荥经县| 册亨县| 慈利县| 玉山县| 都兰县| 凉山| 姚安县| 舞钢市| 铁力市| 新竹县| 潢川县| 伊金霍洛旗| 乐都县| 阿荣旗| 苗栗市| 宁陵县| 丹巴县| 鄂州市| 金川县| 浦城县| 双城市| 济宁市| 安塞县| 新平| 荆门市| 甘孜县| 武宁县| 连平县| 舒城县| 保德县| 泸定县| 杭锦后旗| 鹤山市| 桐城市| 罗山县| 玉龙| 昌邑市|