找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Identit?tskonstruktionen und Lebenszeitverst?ndnis von Kindern; Identit?tsbezogene P Maren Zschach Book 2022 Der/die Herausgeber bzw. der/d

[復(fù)制鏈接]
樓主: polysomnography
11#
發(fā)表于 2025-3-23 13:08:46 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:26 | 只看該作者
13#
發(fā)表于 2025-3-23 18:19:11 | 只看該作者
14#
發(fā)表于 2025-3-24 01:18:27 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:44 | 只看該作者
16#
發(fā)表于 2025-3-24 07:27:57 | 只看該作者
Maren Zschachholistic approach with deep insights into the subject.IncludThis is a textbook on chaos and nonlinear dynamics, written by applied mathematicians for applied mathematicians. It aims to tread a middle ground between the mathematician‘s rigour and the physicist’s pragmatism..While the subject matter i
17#
發(fā)表于 2025-3-24 14:30:10 | 只看該作者
Maren Zschachween the mathematician‘s rigour and the physicist’s pragmatism..While the subject matter is now classical and can be found in many other books, what distinguishes this book is its philosophical approach, its breadth, its conciseness, and its exploration of intellectual byways, as well as its liberal
18#
發(fā)表于 2025-3-24 18:22:18 | 只看該作者
19#
發(fā)表于 2025-3-24 19:34:28 | 只看該作者
the system is called a flow, because their solution is continuous in time. When the rules are a set of discrete difference equations, the system is referred to as a map. The evolution of a dynamical system is best described in its phase space, a coordinate system whose coordinates are all the variab
20#
發(fā)表于 2025-3-25 01:13:38 | 只看該作者
Maren Zschach nonlinear problems should be treated as nonlinear problems and not as simplified linear problems. The theoretical aspects ofchaos have been presented in great detail in several excellent books published in the last five years or so. However, while the problems associated with applications of the th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 09:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛多县| 洛川县| 平和县| 石屏县| 社旗县| 婺源县| 耿马| 兴文县| 潜山县| 蓬溪县| 五河县| 宝鸡市| 蚌埠市| 汕尾市| 偏关县| 台南县| 池州市| 红河县| 普安县| 襄汾县| 鄢陵县| 阿荣旗| 固阳县| 铁岭县| 东宁县| 名山县| 延边| 乳源| 杭锦后旗| 武冈市| 澄城县| 塘沽区| 土默特右旗| 多伦县| 安溪县| 永定县| 固始县| 汕头市| 新邵县| 肇庆市| 烟台市|