找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Curves and Global Questions in Contact Geometry; Casim Abbas,Helmut Hofer Textbook 2019 Springer Nature Switzerland AG 2019 fi

[復(fù)制鏈接]
樓主: bradycardia
11#
發(fā)表于 2025-3-23 13:28:50 | 只看該作者
12#
發(fā)表于 2025-3-23 16:53:04 | 只看該作者
Holomorphic Curves and Global Questions in Contact Geometry978-3-030-11803-7Series ISSN 1019-6242 Series E-ISSN 2296-4894
13#
發(fā)表于 2025-3-23 21:24:09 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:01 | 只看該作者
Basic Results,on are locally diffeomorphic, hence the only local invariant of a contact manifold is its dimension. We will also prove the Legendre neighborhood theorem and its symplectic counterpart, the Lagrange neighborhood theorem. These results provide normal forms for neighborhoods of Legendrian submanifolds
15#
發(fā)表于 2025-3-24 04:27:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:17 | 只看該作者
17#
發(fā)表于 2025-3-24 11:25:55 | 只看該作者
Basic Results,rization of those vector fields whose flow preserves a contact structure (‘contact vector fields’). Reeb vector fields are a special class of contact vector fields. Given a contact structure ., we will find a necessary and sufficient condition for a contact vector field to be the Reeb vector field of some contact form . with ..
18#
發(fā)表于 2025-3-24 17:33:15 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:57 | 只看該作者
Textbook 2019uthors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory..An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic cur
20#
發(fā)表于 2025-3-25 00:36:01 | 只看該作者
Holomorphic Curves and Global Questions in Contact Geometry
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨竹工卡县| 海兴县| 扬中市| 吉水县| 习水县| 闽侯县| 龙里县| 泗洪县| 鞍山市| 枝江市| 盖州市| 原平市| 新郑市| 工布江达县| 湘潭市| 江孜县| 石河子市| 巍山| 苍南县| 佛山市| 天柱县| 尼勒克县| 建德市| 汪清县| 监利县| 叙永县| 翁牛特旗| 将乐县| 泰顺县| 汉沽区| 广灵县| 嘉义县| 工布江达县| 方城县| 修武县| 宁海县| 青海省| 斗六市| 武定县| 浏阳市| 鄂伦春自治旗|