找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Curves and Global Questions in Contact Geometry; Casim Abbas,Helmut Hofer Textbook 2019 Springer Nature Switzerland AG 2019 fi

[復(fù)制鏈接]
查看: 12827|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:36:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry
編輯Casim Abbas,Helmut Hofer
視頻videohttp://file.papertrans.cn/428/427943/427943.mp4
概述Entry point to Symplectic Field Theory (SFT).Entry point for the study of finite energy foliations.Proves deep results in pseudoholomorphic curve theory.Written by leading researchers in this area.A m
叢書(shū)名稱Birkh?user Advanced Texts‘ Basler Lehrbücher
圖書(shū)封面Titlebook: Holomorphic Curves and Global Questions in Contact Geometry;  Casim Abbas,Helmut Hofer Textbook 2019 Springer Nature Switzerland AG 2019 fi
描述.This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory..An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9)..The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors..
出版日期Textbook 2019
關(guān)鍵詞finite energy planes; weinstein conjecture; pseudoholomorphic curves; disk filling method; contact forms
版次1
doihttps://doi.org/10.1007/978-3-030-11803-7
isbn_ebook978-3-030-11803-7Series ISSN 1019-6242 Series E-ISSN 2296-4894
issn_series 1019-6242
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry影響因子(影響力)




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry影響因子(影響力)學(xué)科排名




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry被引頻次




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry被引頻次學(xué)科排名




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry年度引用




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry年度引用學(xué)科排名




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry讀者反饋




書(shū)目名稱Holomorphic Curves and Global Questions in Contact Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:44:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:25:56 | 只看該作者
An Introduction to Contact Geometry,A . on an odd-dimensional manifold . of dimension 2.?+?1 is a one-form . such that the (2.?+?1)-form Ω given by . defines a volume form on .. We observe that any manifold admitting a contact form is necessarily orientable, and that a contact form defines a natural orientation.
地板
發(fā)表于 2025-3-22 06:11:09 | 只看該作者
Finite Energy Planes and Periodic Orbits,In this chapter we will prove the main result on finite energy planes due to H. Hofer [.] (see also [.]). Namely, given any manifold . equipped with a contact form ., denote by .?→?. the associated contact structure and by .. the associated Reeb vector field.
5#
發(fā)表于 2025-3-22 12:43:20 | 只看該作者
6#
發(fā)表于 2025-3-22 12:53:30 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:05 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:47 | 只看該作者
9#
發(fā)表于 2025-3-23 05:12:53 | 只看該作者
Disk Filling Methods and Applications,Let (., .) be a closed three dimensional contact manifold with overtwisted contact structure .. Then there exists a contractible periodic orbit for the Reeb vector field ...
10#
發(fā)表于 2025-3-23 06:04:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
忻城县| 安多县| 雷山县| 宁明县| 华容县| 莱西市| 金堂县| 陆丰市| 仁布县| 烟台市| 如皋市| 邢台市| 延吉市| 多伦县| 五家渠市| 成安县| 吉木萨尔县| 乳源| 沙湾县| 高陵县| 许昌市| 东港市| 晋宁县| 宝丰县| 绥芬河市| 巴里| 托克逊县| 化州市| 大同县| 宣汉县| 临沂市| 错那县| 衡阳市| 宣化县| 镇巴县| 如东县| 安庆市| 淮阳县| 慈溪市| 临湘市| 景洪市|