找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Big Data Analytics; Wolfgang Karl H?rdle,Henry Horng-Shing Lu,Xiaotong Book 2018 Springer International Publishing AG, part of

[復(fù)制鏈接]
樓主: CULT
51#
發(fā)表于 2025-3-30 09:27:28 | 只看該作者
Sufficient Dimension Reduction for Tensor Data the number of samples. To preserve the tensor structure and reduce the dimensionality simultaneously, we revisit the tensor sufficient dimension reduction model and apply it to colorimetric sensor arrays. Tensor sufficient dimension reduction method is simple but powerful and exhibits a competent e
52#
發(fā)表于 2025-3-30 13:23:06 | 只看該作者
Bridging Density Functional Theory and Big Data Analytics with Applications also applied on the post-process of magnetic resonance imaging (MRI) and better tumor recognitions can be achieved on the T1 post-contrast and T2 modes. It is appealing that the post-processing MRI using the proposed DFT-based algorithm would benefit the scientists in the judgment of clinical patho
53#
發(fā)表于 2025-3-30 20:30:19 | 只看該作者
Q3-D3-LSA: D3.js and Generalized Vector Space Models for Statistical Computinger .. evaluation. QuantNet and the corresponding Data-Driven Documents (D3) based visualization can be found and applied under .. The driving technology behind it is Q3-D3-LSA, which is the combination of “GitHub API based QuantNet Mining infrastructure in .”, LSA and D3 implementation.
54#
發(fā)表于 2025-3-30 23:20:13 | 只看該作者
https://doi.org/10.1007/978-3-662-10458-3ic methodologies, scalable algorithms, and the state-of-the-art computational tools have been designed for model estimation, variable selection, statistical inferences for high dimensional regression, and classification problems. This chapter provides an overview of recent advances on nonparametrics in big data analytics.
55#
發(fā)表于 2025-3-31 02:39:42 | 只看該作者
56#
發(fā)表于 2025-3-31 08:32:51 | 只看該作者
Book 2018or statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science. ?
57#
發(fā)表于 2025-3-31 09:48:35 | 只看該作者
58#
發(fā)表于 2025-3-31 16:52:18 | 只看該作者
Therapie bakterieller Infektionene responses and the full feature data. This presentation is focused on local kernel regression methods in semi-supervised learning and provides a good starting point for understanding semi-supervised methods in general.
59#
發(fā)表于 2025-3-31 18:50:18 | 只看該作者
Analysis of High-Dimensional Regression Models Using Orthogonal Greedy Algorithmsries models, and illustrate the advantage of our results compared to those established for Lasso by Basu and Michailidis (Ann Stat 43:1535–1567, 2015) and Wu and Wu (Electron J Stat 10:352–379, 2016).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
慈利县| 那坡县| 峡江县| 平顺县| 阿图什市| 正定县| 桑日县| 上思县| 原平市| 江津市| 台中市| 凌云县| 慈溪市| 西畴县| 正蓝旗| 东明县| 萨嘎县| 木兰县| 会泽县| 太谷县| 吉安市| 自贡市| 吴江市| 福鼎市| 琼结县| 墨玉县| 故城县| 贵州省| 图木舒克市| 蓝田县| 西乡县| 永登县| 迁西县| 翁牛特旗| 资兴市| 潢川县| 海林市| 桃江县| 临潭县| 泗水县| 平遥县|