找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Big Data Analytics; Wolfgang Karl H?rdle,Henry Horng-Shing Lu,Xiaotong Book 2018 Springer International Publishing AG, part of

[復(fù)制鏈接]
查看: 32635|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:51:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Handbook of Big Data Analytics
編輯Wolfgang Karl H?rdle,Henry Horng-Shing Lu,Xiaotong
視頻videohttp://file.papertrans.cn/421/420870/420870.mp4
概述Offers a valuable guide to a broad range of big data analytics with statistics in cross-disciplinary applications.Shows how to handle high-dimensional problems in big data analytics.Offers software-ha
叢書名稱Springer Handbooks of Computational Statistics
圖書封面Titlebook: Handbook of Big Data Analytics;  Wolfgang Karl H?rdle,Henry Horng-Shing Lu,Xiaotong Book 2018 Springer International Publishing AG, part of
描述Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science. ?
出版日期Book 2018
關(guān)鍵詞Big Data; Computational Statistics; Data Analytics; High-Dimensional Data Analysis; Software-Hardware Co
版次1
doihttps://doi.org/10.1007/978-3-319-18284-1
isbn_softcover978-3-030-13238-5
isbn_ebook978-3-319-18284-1Series ISSN 2197-9790 Series E-ISSN 2197-9804
issn_series 2197-9790
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Handbook of Big Data Analytics影響因子(影響力)




書目名稱Handbook of Big Data Analytics影響因子(影響力)學(xué)科排名




書目名稱Handbook of Big Data Analytics網(wǎng)絡(luò)公開度




書目名稱Handbook of Big Data Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Handbook of Big Data Analytics被引頻次




書目名稱Handbook of Big Data Analytics被引頻次學(xué)科排名




書目名稱Handbook of Big Data Analytics年度引用




書目名稱Handbook of Big Data Analytics年度引用學(xué)科排名




書目名稱Handbook of Big Data Analytics讀者反饋




書目名稱Handbook of Big Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:52 | 只看該作者
A. Tarnawski,H. Gergely,T. G. Douglass advanced analytics. CDA is especially important in the age of big data, where the data is so complex, and includes both structured and unstructured data, that it is impossible to manually examine all possible combinations. As a cognitive computing system, CDA does not simply take over the entire pr
板凳
發(fā)表于 2025-3-22 01:34:44 | 只看該作者
https://doi.org/10.1007/978-3-658-25927-3cantly outpaces the increase of storage and computational capacity of high performance computers. The challenge in analyzing big data calls for innovative analytical and computational methods that make better use of currently available computing power. An emerging powerful family of methods for effe
地板
發(fā)表于 2025-3-22 07:46:31 | 只看該作者
,Therapie der ?sophagusvarizenblutung,ence is pursued. Distributed statistical inference is a technique to tackle a type of the above problem, and has recently attracted enormous attention. Many existing work focus on the averaging estimator, e.g., Zhang et al. (2013) and many others. In this chapter, we propose a one-step approach to e
5#
發(fā)表于 2025-3-22 11:54:12 | 只看該作者
https://doi.org/10.1007/978-3-662-10458-3ta. Traditional nonparametric methods are challenged by modern high dimensional data due to the curse of dimensionality. Over the past two decades, there have been rapid advances in nonparametrics to accommodate analysis of large-scale and high dimensional data. A variety of cutting-edge nonparametr
6#
發(fā)表于 2025-3-22 13:35:52 | 只看該作者
Siegfried Kasper,Hans-Jürgen M?llers. A problem of current interest is clustering and classification of multiple time series. When various time series are fitted to models, the different time series can be grouped into clusters based on the fitted models. If there are different identifiable classes of time series, the fitted models c
7#
發(fā)表于 2025-3-22 21:04:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:31 | 只看該作者
Therapeutisches Arbeiten mit Tr?umendistributional approximations of functionals of non-Gaussian vectors by those of Gaussian ones. Differently from the widely used Bonferroni approach, our procedure is dependence-adjusted and has an asymptotically correct size and power. To obtain cutoff values of our test, we propose a half-sampling
9#
發(fā)表于 2025-3-23 04:11:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:13:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信阳市| 永丰县| 余干县| 龙游县| 龙口市| 绥化市| 商都县| 海淀区| 廉江市| 台中县| 青州市| 长沙县| 砀山县| 凭祥市| 乌海市| 武胜县| 阳春市| 壶关县| 大同县| 会昌县| 镇赉县| 辽源市| 阿鲁科尔沁旗| 文水县| 会泽县| 太谷县| 涿州市| 台南市| 商南县| 永昌县| 尼玛县| 武定县| 蓬安县| 昌邑市| 钦州市| 方山县| 高密市| 台东市| 陆丰市| 峨眉山市| 安远县|