找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook for Automatic Computation; Volume II: Linear Al J. H. Wilkinson,C. Reinsch,F. L. Bauer,A. S. House Book 1971 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 民俗學(xué)
11#
發(fā)表于 2025-3-23 12:05:10 | 只看該作者
https://doi.org/10.1007/978-0-387-28822-2If . is a non-singular matrix then, in general, it can be factorized in the form . = ., where . is lower-triangular and . is upper-triangular. The factorization, when it exists, is unique to within a non-singular diagonal multiplying factor.
12#
發(fā)表于 2025-3-23 15:55:45 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:43 | 只看該作者
https://doi.org/10.1007/978-3-319-41585-7Let . be a matrix of . rows and . columns, .≦.. If and only if the columns are linearly independent, then for any vector . there exists a unique vector . minimizing the Euclidean norm of ..
14#
發(fā)表于 2025-3-24 00:40:11 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:32 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:42 | 只看該作者
https://doi.org/10.5822/978-1-61091-205-1In [1] an algorithm was described for carrying out the . algorithm for a real symmetric matrix using shifts of origin. This algorithm is described by the relations.where .. is orthogonal, .. is lower triangular and .. is the shift of origin determined from the leading 2×2 matrix of ...
17#
發(fā)表于 2025-3-24 11:21:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:44:01 | 只看該作者
Symmetric Decomposition of a Positive Definite MatrixThe methods are based on the following theorem due to . [.].
19#
發(fā)表于 2025-3-24 21:26:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:59 | 只看該作者
Symmetric Decomposition of Positive Definite Band MatricesThe method is based on the following theorem. If . is a positive definite matrix of band form such that.then there exists a real non-singular lower triangular matrix . such that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁南县| 泗阳县| 福鼎市| 波密县| 洪雅县| 阿克| 宝山区| 福清市| 花莲市| 康马县| 赤水市| 新绛县| 自贡市| 托里县| 漳浦县| 瑞昌市| 新兴县| 阜城县| 葫芦岛市| 西昌市| 通江县| 墨竹工卡县| 西和县| 乃东县| 龙里县| 沅陵县| 阿荣旗| 芷江| 遵义市| 兴城市| 砚山县| 丰城市| 永平县| 永修县| 新津县| 玛沁县| 黎川县| 布拖县| 扎囊县| 绥中县| 平阴县|