找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook for Automatic Computation; Volume II: Linear Al J. H. Wilkinson,C. Reinsch,F. L. Bauer,A. S. House Book 1971 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 民俗學(xué)
21#
發(fā)表于 2025-3-25 06:17:20 | 只看該作者
Solution of Symmetric and Unsymmetric Band Equations and the Calculations of Eigenvectors of Band MaIn an earlier paper in this series [2] the triangular factorization of positive definite band matrices was discussed. With such matrices there is no need for pivoting, but with non-positive definite or unsymmetric matrices pivoting is necessary in general, otherwise severe numerical instability may result even when the matrix is well-conditioned.
22#
發(fā)表于 2025-3-25 11:31:26 | 只看該作者
Solution of Real and Complex Systems of Linear EquationsIf . is a non-singular matrix then, in general, it can be factorized in the form . = ., where . is lower-triangular and . is upper-triangular. The factorization, when it exists, is unique to within a non-singular diagonal multiplying factor.
23#
發(fā)表于 2025-3-25 13:48:13 | 只看該作者
Linear Least Squares Solutions by Housholder TransformationsLet . be a given .×. real matrix with .≧. and of rank . and . a given vector. We wish to determine a vector . such that.where ∥ … ∥ indicates the euclidean norm. Since the euclidean norm is unitarily invariant.where .=.. and ... = .. We choose . so that.and . is an upper triangular matrix. Clearly,.where . denotes the first . components of ..
24#
發(fā)表于 2025-3-25 19:21:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:32:15 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:09 | 只看該作者
The Jacobi Method for Real Symmetric MatricesAs is well known, a real symmetric matrix can be transformed iteratively into diagonal form through a sequence of appropriately chosen . (in the following called .):.where ..= ..(.) is an orthogonal matrix which deviates from the unit matrix only in the elements
27#
發(fā)表于 2025-3-26 05:54:20 | 只看該作者
The Implicit , AlgorithmIn [1] an algorithm was described for carrying out the . algorithm for a real symmetric matrix using shifts of origin. This algorithm is described by the relations.where .. is orthogonal, .. is lower triangular and .. is the shift of origin determined from the leading 2×2 matrix of ...
28#
發(fā)表于 2025-3-26 10:59:41 | 只看該作者
29#
發(fā)表于 2025-3-26 13:48:07 | 只看該作者
978-3-642-86942-6Springer-Verlag Berlin Heidelberg 1971
30#
發(fā)表于 2025-3-26 17:22:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈巴河县| 东港市| 临邑县| 沁水县| 农安县| 永靖县| 陆良县| 留坝县| 凤台县| 乌拉特后旗| 卢湾区| 静宁县| 合肥市| 嘉黎县| 镇赉县| 天等县| 临漳县| 马山县| 都匀市| 会同县| 旬邑县| 吐鲁番市| 保康县| 鹿泉市| 海盐县| 梧州市| 禄劝| 内丘县| 利辛县| 汨罗市| 白朗县| 卓尼县| 新龙县| 宾川县| 大城县| 宁夏| 永安市| 阳城县| 太保市| 印江| 乌苏市|