找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization; Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia

[復(fù)制鏈接]
樓主: SCOWL
11#
發(fā)表于 2025-3-23 12:54:02 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:17 | 只看該作者
14#
發(fā)表于 2025-3-23 22:26:12 | 只看該作者
15#
發(fā)表于 2025-3-24 03:51:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:18:50 | 只看該作者
17#
發(fā)表于 2025-3-24 13:27:47 | 只看該作者
https://doi.org/10.1007/978-3-031-45245-1ent of coordinate ., but then they no longer belong to the Hilbert space of geometric prequantization (except if they are identically zero) because the integral over . diverges. However, if we restrict our attention to functions independent of . and integrate over the .(R) instead of over the . and .(R.) then we get the Schr?dinger quantization.
18#
發(fā)表于 2025-3-24 16:21:38 | 只看該作者
Geometric Quantization,ent of coordinate ., but then they no longer belong to the Hilbert space of geometric prequantization (except if they are identically zero) because the integral over . diverges. However, if we restrict our attention to functions independent of . and integrate over the .(R) instead of over the . and .(R.) then we get the Schr?dinger quantization.
19#
發(fā)表于 2025-3-24 20:34:20 | 只看該作者
20#
發(fā)表于 2025-3-25 01:59:25 | 只看該作者
https://doi.org/10.1007/978-3-031-34640-8t be solved with another techniques and it also helps us to understand the general character of motion in more complicated mechanical systems such as ergodic theory, statistical mechanics and quantum mechanics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香河县| 象山县| 兴业县| 贵港市| 怀安县| 二连浩特市| 扬州市| 太原市| 财经| 综艺| 宕昌县| 廊坊市| 武宣县| 阳城县| 莱州市| 西城区| 武平县| 望谟县| 高雄市| 长乐市| 五寨县| 桓台县| 中西区| 茌平县| 石嘴山市| 卫辉市| 巴东县| 乐东| 塔城市| 沅江市| 弥勒县| 建水县| 定南县| 呼图壁县| 集贤县| 定边县| 昂仁县| 嘉峪关市| 扎鲁特旗| 宿松县| 杭州市|