找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization; Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia

[復制鏈接]
查看: 26609|回復: 47
樓主
發(fā)表于 2025-3-21 16:17:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hamiltonian Mechanical Systems and Geometric Quantization
編輯Mircea Puta
視頻videohttp://file.papertrans.cn/421/420635/420635.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Hamiltonian Mechanical Systems and Geometric Quantization;  Mircea Puta Book 1993 Springer Science+Business Media Dordrecht 1993 Hamiltonia
出版日期Book 1993
關鍵詞Hamiltonian mechanics; manifold; stability; symplectic geometry
版次1
doihttps://doi.org/10.1007/978-94-011-1992-4
isbn_softcover978-94-010-4880-4
isbn_ebook978-94-011-1992-4
copyrightSpringer Science+Business Media Dordrecht 1993
The information of publication is updating

書目名稱Hamiltonian Mechanical Systems and Geometric Quantization影響因子(影響力)




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization影響因子(影響力)學科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization網(wǎng)絡公開度




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization網(wǎng)絡公開度學科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization被引頻次




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization被引頻次學科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization年度引用




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization年度引用學科排名




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization讀者反饋




書目名稱Hamiltonian Mechanical Systems and Geometric Quantization讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:36:14 | 只看該作者
Lie Groups. Momentum Mappings. Reduction.,le and Jacobi on the elimination of the node and the fixing of the center of mass in the n-body problem, as well as the coadjoint orbit’s theorem. This method is also significant in various physical examples.
板凳
發(fā)表于 2025-3-22 02:17:16 | 只看該作者
Hamilton-Poisson Mechanics,sical variables. This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds..This chapter develops the most important theoretical topics in Hamilton-Poisson mechanics in the general setting of Poisson manifolds.
地板
發(fā)表于 2025-3-22 05:57:01 | 只看該作者
Geometric Prequantization,ble progress has been made by returning to an examination of the mathematical foundations of classical physics and noting that they can be simply and elegantly phrased in terms of symplectic geometry. The resulting quantization theory, geometric quantization, is an outgrowth of independent work by K
5#
發(fā)表于 2025-3-22 12:26:11 | 只看該作者
Geometric Quantization,en it is clear that the corresponding operators δ. do not agree, and the Hilbert representation spaces are different. More precisely, the Hilbert space of the first consists of functions of . and . simultaneously, in the second case the Hilbert space consists of functions depending on the . only. Th
6#
發(fā)表于 2025-3-22 14:11:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:44:20 | 只看該作者
https://doi.org/10.1007/978-3-031-34640-8t be solved with another techniques and it also helps us to understand the general character of motion in more complicated mechanical systems such as ergodic theory, statistical mechanics and quantum mechanics.
8#
發(fā)表于 2025-3-22 21:30:47 | 只看該作者
The Physics and Physical Chemistry of Waterle and Jacobi on the elimination of the node and the fixing of the center of mass in the n-body problem, as well as the coadjoint orbit’s theorem. This method is also significant in various physical examples.
9#
發(fā)表于 2025-3-23 02:08:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:51:24 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
静海县| 会昌县| 台北县| 丽江市| 西和县| 建昌县| 昭通市| 叙永县| 淳化县| 房山区| 新营市| 宾川县| 普陀区| 黄石市| 临朐县| 五常市| 新平| 洛浦县| 加查县| 宁阳县| 竹北市| 固镇县| 延庆县| 潍坊市| 桓仁| 广州市| 读书| 五峰| 漠河县| 雅江县| 平乡县| 武夷山市| 社旗县| 噶尔县| 峨边| 抚顺县| 天峨县| 浑源县| 京山县| 工布江达县| 新建县|