找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems and Applications; Walter Craig Conference proceedings 20081st edition Springer Science+Business Media B.V. 2

[復(fù)制鏈接]
樓主: chondrocyte
41#
發(fā)表于 2025-3-28 15:06:48 | 只看該作者
Spectral gaps of potentials in weighted Sobolev spaces,undary conditions. We prove results about correspondencies between the asymptotic behaviour of the spectral gaps of . and the regularity of . in the Gevrey case, among others. The proofs are based on a Fourier block decomposition due to Kappeler &Mityagin, and a novel application of the implicit function theorem.
42#
發(fā)表于 2025-3-28 20:29:26 | 只看該作者
43#
發(fā)表于 2025-3-28 23:59:05 | 只看該作者
44#
發(fā)表于 2025-3-29 03:56:55 | 只看該作者
45#
發(fā)表于 2025-3-29 07:52:32 | 只看該作者
Walter CraigLecture notes on current state-of-the-art by the researchers who have developed the theory.Introductions of the technically deep methods of Hamiltonian mechanics to partial differential equations.Cont
46#
發(fā)表于 2025-3-29 13:22:07 | 只看該作者
47#
發(fā)表于 2025-3-29 17:27:06 | 只看該作者
48#
發(fā)表于 2025-3-29 21:02:20 | 只看該作者
49#
發(fā)表于 2025-3-30 03:44:54 | 只看該作者
The Phylogeny of Anguinomorph LizardsIn these lectures we present an extension of Birkhoff normal form theorem to some Hamiltonian PDEs. The theorem applies to semilinear equations with nonlinearity of a suitable class.We present an application to the nonlinear wave equation on a segment or on a sphere. We also give a complete proof of all the results.
50#
發(fā)表于 2025-3-30 04:32:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴青县| 比如县| 公主岭市| 永仁县| 焉耆| 文安县| 莱西市| 舒城县| 新营市| 定兴县| 黄龙县| 三都| 东安县| 萨嘎县| 永年县| 永定县| 崇州市| 宝山区| 客服| 右玉县| 应城市| 河津市| 通辽市| 叙永县| 宁武县| 岳阳县| 高尔夫| 绥阳县| 平谷区| 醴陵市| 汉沽区| 江北区| 马公市| 乐平市| 新竹县| 万宁市| 曲阜市| 西乡县| 伊春市| 神木县| 安乡县|