找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems and Applications; Walter Craig Conference proceedings 20081st edition Springer Science+Business Media B.V. 2

[復制鏈接]
樓主: chondrocyte
31#
發(fā)表于 2025-3-26 23:35:17 | 只看該作者
32#
發(fā)表于 2025-3-27 01:48:49 | 只看該作者
33#
發(fā)表于 2025-3-27 06:42:23 | 只看該作者
The Physical Attractiveness Phenomenatablish the presence of these structures in a given near integrable systems or in systems for which good numerical information is available. We also discuss some quantitative features of the diffusion mechanisms such as time of diffusion, Hausdorff dimension of diffusing orbits, etc.
34#
發(fā)表于 2025-3-27 10:08:05 | 只看該作者
Edmund Drauglis,Robert I. Jaffeeundergoes substantial variation. Variational method has been shown a powerful tool for the study of Arnold diffusion of Hamiltonian systems convex in actions. In variational language, it amounts to construct an orbit connecting two different Aubry sets. This is the main content of the lecture notes.
35#
發(fā)表于 2025-3-27 16:50:52 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:50 | 只看該作者
https://doi.org/10.1007/978-1-349-81720-7 consider the problem in weighted Sobolev spaces, which comprise classical Sobolev spaces, Gevrey spaces, and analytic spaces. We show that the initial value problem is well posed in all spaces with subexponential growth of Fourier coefficients, and ‘a(chǎn)lmost well posed’ in spaces with exponential growth of Fourier coefficients.
37#
發(fā)表于 2025-3-27 22:54:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:59:46 | 只看該作者
39#
發(fā)表于 2025-3-28 08:56:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:58:32 | 只看該作者
Variational methods for the problem of Arnold diffusion,undergoes substantial variation. Variational method has been shown a powerful tool for the study of Arnold diffusion of Hamiltonian systems convex in actions. In variational language, it amounts to construct an orbit connecting two different Aubry sets. This is the main content of the lecture notes.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇文区| 赤水市| 昆山市| 新宁县| 贞丰县| 台北市| 元阳县| 宜州市| 莆田市| 大洼县| 台南市| 安新县| 岳池县| 青阳县| 吉林市| 乐山市| 调兵山市| 台东县| 石狮市| 深圳市| 沁源县| 岳阳县| 砚山县| 射阳县| 东城区| 富阳市| 张家界市| 通山县| 霍州市| 永康市| 潮安县| 乌什县| 大港区| 洮南市| 潜江市| 莒南县| 康定县| 务川| 长兴县| 丹巴县| 湖北省|