找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: odometer
11#
發(fā)表于 2025-3-23 09:44:20 | 只看該作者
12#
發(fā)表于 2025-3-23 14:27:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:14 | 只看該作者
Green‘s Functions in Quantum Physics978-3-540-28841-1Series ISSN 0171-1873 Series E-ISSN 2197-4179
14#
發(fā)表于 2025-3-23 23:34:45 | 只看該作者
https://doi.org/10.1007/978-3-663-14577-6In this chapter, the time-independent Green’s functions are defined, their main properties are presented, methods for their calculation are briefly discussed, and their use in problems of physical interest is summarized.
15#
發(fā)表于 2025-3-24 05:54:15 | 只看該作者
https://doi.org/10.1007/978-3-663-08810-3The Green’s functions corresponding to linear partial differential equations of first and second order in time are defined; their main properties and uses are presented.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 10:49:54 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:38 | 只看該作者
Time-Dependent Green’s FunctionsThe Green’s functions corresponding to linear partial differential equations of first and second order in time are defined; their main properties and uses are presented.
19#
發(fā)表于 2025-3-24 21:55:23 | 只看該作者
Physical Significance of ,. Application to the Free-Particle CaseThe general theory developed in Chap. 1 can be applied directly to the time-independent one-particle Schr?dinger equation by making the substitutions .(.)→?(.), λ → ., where ?(.) is the Hamiltonian. The formalism presented in Chap. 2, Sects. 2.1,2.2 is applicable to the time-dependent one-particle Schr?dinger equation.
20#
發(fā)表于 2025-3-25 02:02:22 | 只看該作者
Auftragsplanung und -steuerung,nctions like the conductivity. The poles of an appropriate analytic continuation of . in the complex .-plane can be interpreted as the energy (the real part of the pole) and the inverse lifetime (the imaginary part of the pole) of quasiparticles. The latter are entities that allow us to map an interacting system to a noninteracting one.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙陵县| 彭水| 高雄市| 侯马市| 黑山县| 乐东| 东明县| 濮阳市| 古交市| 宣汉县| 涟水县| 鸡东县| 双柏县| 文登市| 神池县| 二连浩特市| 札达县| 南京市| 广河县| 太仓市| 德格县| 白城市| 万盛区| 辉南县| 自治县| 正镶白旗| 陆良县| 原平市| 嘉兴市| 浦县| 申扎县| 包头市| 嵊州市| 德保县| 东兰县| 德庆县| 铜川市| 台北市| 临城县| 宝山区| 沾化县|