找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 04:26:45 | 只看該作者
Properties and Use of the Green’s Functionsnctions like the conductivity. The poles of an appropriate analytic continuation of . in the complex .-plane can be interpreted as the energy (the real part of the pole) and the inverse lifetime (the imaginary part of the pole) of quasiparticles. The latter are entities that allow us to map an interacting system to a noninteracting one.
22#
發(fā)表于 2025-3-25 09:44:18 | 只看該作者
23#
發(fā)表于 2025-3-25 12:58:58 | 只看該作者
Electrical Conductivity and Green’s Functionsfunctions have played a central role as a theoretical tool. In this chapter, we shall introduce several transport quantities, such as electrical conductivity, and present several schemes for their calculation.
24#
發(fā)表于 2025-3-25 15:56:58 | 只看該作者
Green’s Functions and Perturbation Theory .(.) corresponding to ?.. 2) Express .(.) as a perturbation series in terms of .(.) and ?., where .(.) is the Green’s function associated with ?. 3) Extract from .(.) information about the eigenvalues and eigenfunctions of ?.
25#
發(fā)表于 2025-3-25 22:24:23 | 只看該作者
Green’s Functions for Tight-Binding Hamiltoniansι; the sites {ι} form a lattice. Such Hamiltonians are very important in solid-state physics. Here we calculate the Green’s functions associated with the TBH for various simple lattices. We also review briefly some applications in solid-state physics.
26#
發(fā)表于 2025-3-26 00:47:05 | 只看該作者
Single Impurity Scatteringty in a perfect periodic lattice. We obtain explicit results for bound and scattering states. Certain important applications, such as gap levels in solids, Cooper pairs in superconductivity, resonance and bound states producing the Kondo effect, and impurity lattice vibrations, are presented.
27#
發(fā)表于 2025-3-26 08:12:12 | 只看該作者
28#
發(fā)表于 2025-3-26 12:03:37 | 只看該作者
29#
發(fā)表于 2025-3-26 15:12:44 | 只看該作者
30#
發(fā)表于 2025-3-26 17:58:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潍坊市| 漳州市| 都匀市| 探索| 衡水市| 丰台区| 静宁县| 寿宁县| 永寿县| 布尔津县| 东源县| 龙胜| 贵州省| 辽宁省| 淳安县| 应城市| 揭西县| 勃利县| 定州市| 泾源县| 基隆市| 邯郸市| 万安县| 鹿邑县| 济宁市| 宁德市| 玉林市| 潍坊市| 宁夏| 镇雄县| 南郑县| 抚州市| 堆龙德庆县| 龙口市| 贵港市| 西青区| 敦煌市| 体育| 广宁县| 岚皋县| 翁源县|