找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Exacting
11#
發(fā)表于 2025-3-23 11:48:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:22 | 只看該作者
Graphs and Combinatorial Optimization: from Theory to Applications
13#
發(fā)表于 2025-3-23 18:36:36 | 只看該作者
The Chromatic Polynomial of a Digraph,ber of such colorings with . colors can be done by counting so-called Neumann-Lara-coflows (NL-coflows), which build a polynomial in .. We will present a representation of this polynomial using totally cyclic subdigraphs, which form a graded poset .. Furthermore we will decompose our NL-coflow polyn
14#
發(fā)表于 2025-3-24 01:02:50 | 只看該作者
On List ,-Coloring Convex Bipartite Graphs,with colors in {1, 2, …, .}. The problem is known to be NP-hard even for .?=?3 within the class of 3-regular planar bipartite graphs and for .?=?4 within the class of chordal bipartite graphs. In 2015 Huang, Johnson and Paulusma asked for the complexity of . 3. in the class of chordal bipartite grap
15#
發(fā)表于 2025-3-24 03:09:26 | 只看該作者
Total Chromatic Sum for Trees, provide infinite families of trees for which the minimum number of colors to achieve the total chromatic sum is equal to the total chromatic number. We construct infinite families of trees for which these numbers are not equal, disproving the conjecture from 2012.
16#
發(fā)表于 2025-3-24 08:32:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:32:11 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
获嘉县| 黑水县| 轮台县| 潼关县| 华蓥市| 广宁县| 崇明县| 花莲县| 丽江市| 昌乐县| 新安县| 定陶县| 五寨县| 密云县| 兴安盟| 岑溪市| 惠东县| 时尚| 琼海市| 凯里市| 安宁市| 青田县| 阿拉善盟| 神木县| 辽中县| 广元市| 手机| 遂平县| 庆城县| 馆陶县| 遵义县| 化德县| 微博| 漳州市| 广南县| 淳化县| 怀宁县| 资中县| 瑞昌市| 米泉市| 柘城县|