找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Agitated
41#
發(fā)表于 2025-3-28 17:46:02 | 只看該作者
https://doi.org/10.1057/978-1-137-49676-8nditions, then a solution, a . for ., exists [.]. More generally, considering any graph-theoretic tree . with all nodes of degree < 3 labeled by elements of . (that is, an .), we may ask for a minimal length realization of . in (.), that is, for an embedding of the node set of . in . which extends t
42#
發(fā)表于 2025-3-28 18:49:19 | 只看該作者
43#
發(fā)表于 2025-3-29 01:14:44 | 只看該作者
Modernity and Meaning in Victorian Londontesian powers the lexicographic order provides nested solutions for the EIP. We present several new classes of such graphs that include as special cases all presently known graphs with this property. Our new results are applied to derive best possible edge-isoperimetric inequalities for the cartesia
44#
發(fā)表于 2025-3-29 06:54:25 | 只看該作者
https://doi.org/10.1057/9781403907097 colored with . colors. We wish to complete the coloring of the edges of . minimizing the total number of colors used. The problem has been proved to be NP-hard even for bipartite graphs of maximum degree three [.]. In previous work Caragiannis et al. [.] consider two special cases of the problem an
45#
發(fā)表于 2025-3-29 09:12:03 | 只看該作者
46#
發(fā)表于 2025-3-29 14:09:17 | 只看該作者
https://doi.org/10.1007/978-3-031-32107-8 a subtree intersection model. Computing the tree-degree is NP-complete even for planar graphs, but polynomial time algorithms exist for outer-planar graphs, diamond-free graphs and chordal graphs. The number of minimal separators of graphs with bounded tree-degree is polynomial. This implies that t
47#
發(fā)表于 2025-3-29 17:31:36 | 只看該作者
48#
發(fā)表于 2025-3-29 23:20:12 | 只看該作者
49#
發(fā)表于 2025-3-30 02:08:02 | 只看該作者
https://doi.org/10.1057/9780230339194t shares one of the powerful properties of treewidth, namely: if a graph is of bounded treewidth (or clique-width), then there is a polynomial time algorithm for any graph problem expressible in Monadic Second Order Logic, using quantifiers on vertices (in the case of clique-width you must assume a
50#
發(fā)表于 2025-3-30 06:02:22 | 只看該作者
https://doi.org/10.1007/978-3-319-66131-5cted multi-graph . in a compact way. In this paper, we study planarity of the 2-level cactus, which can be used, e.g., in graph drawing. We give a new sufficient planarity criterion in terms of projection paths over a spanning subtree of a graph. Using this criterion, we show that the 2-level cactus
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赞皇县| 信丰县| 景德镇市| 襄樊市| 宕昌县| 恩平市| 长岭县| 嘉定区| 望都县| 集贤县| 博爱县| 武功县| 科尔| 满城县| 库车县| 中卫市| 临洮县| 双牌县| 遂川县| 芦溪县| 扬中市| 太和县| 黑山县| 普兰店市| 阿鲁科尔沁旗| 峨边| 通道| 兴仁县| 桓台县| 桓仁| 青冈县| 宜兰县| 且末县| 增城市| 岳阳县| 乐亭县| 青川县| 缙云县| 阿坝| 泗阳县| 丹棱县|