找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Agitated
11#
發(fā)表于 2025-3-23 12:35:07 | 只看該作者
t families of graphs such as trees, cycles, complete bipartite graphs, outerplanar graphs and 2-dimensional grids. We also study and give bounds for the star chromatic number of other families of graphs, such as hypercubes, tori, .-dimensional grids, graphs with bounded treewidth and planar graphs.
12#
發(fā)表于 2025-3-23 14:19:28 | 只看該作者
13#
發(fā)表于 2025-3-23 18:07:02 | 只看該作者
Edge-Isoperimetric Problems for Cartesian Powers of Regular Graphs,es all presently known graphs with this property. Our new results are applied to derive best possible edge-isoperimetric inequalities for the cartesian powers of arbitrary regular, resp. regular bipartite, graphs with a high density.
14#
發(fā)表于 2025-3-23 23:01:59 | 只看該作者
Maximum Clique Transversals,f minimum cardinality. We consider the problem for planar graphs and present fixed parameter and approximation results..We also examine some other graph classes: subclasses of chordal graphs such as k-trees, strongly chordal graphs, etc., graphs with few . ., comparability graphs, and distance hereditary graphs.
15#
發(fā)表于 2025-3-24 04:18:21 | 只看該作者
16#
發(fā)表于 2025-3-24 09:33:00 | 只看該作者
17#
發(fā)表于 2025-3-24 14:06:01 | 只看該作者
(,+) -Disatance- Herediatry Graphs,.. The class of all these graphs is denoted by DH(., +) By varying the parameter ., classes DH(., +) form a hierarchy that represents a parametric extension of the well-known class of distance-hereditary graphs, and include all graphs.
18#
發(fā)表于 2025-3-24 16:03:24 | 只看該作者
19#
發(fā)表于 2025-3-24 21:17:57 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:12 | 只看該作者
Small ,-Dominating Sets in Planar Graphs with Applications, = O(1/ε). For several subclasses of planar graphs of diameter ., we show that γ.(.) is bounded by a constant for . ? ./2. We conjecture that the same result holds for every planar graph. This problem is motivated by the design of routing schemes with compact data structures.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开远市| 综艺| 玉林市| 屏南县| 岱山县| 洪泽县| 屯留县| 贵溪市| 五峰| 巫山县| 正镶白旗| 醴陵市| 东明县| 九寨沟县| 南宫市| 黄梅县| 东台市| 小金县| 兰西县| 武山县| 闸北区| 泰宁县| 霍林郭勒市| 休宁县| 宁明县| 涿州市| 庐江县| 儋州市| 吉木萨尔县| 万州区| 阿鲁科尔沁旗| 北碚区| 沛县| 池州市| 丰都县| 陇西县| 文登市| 铜鼓县| 南郑县| 门头沟区| 衡阳市|