找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 代表
51#
發(fā)表于 2025-3-30 11:17:39 | 只看該作者
On Minimum Area Planar Upward Drawings of Directed Trees and Other Families of Directed Acyclic Grants of planar upward drawings of several families of directed trees, we show how the results obtained for trees can be exploited to determine asymptotic optimal values for the area occupation of planar upward drawings of . and ..
52#
發(fā)表于 2025-3-30 12:50:53 | 只看該作者
53#
發(fā)表于 2025-3-30 19:13:56 | 只看該作者
54#
發(fā)表于 2025-3-30 23:25:13 | 只看該作者
55#
發(fā)表于 2025-3-31 01:00:43 | 只看該作者
https://doi.org/10.1007/978-3-662-65584-9?. is connected. We also show that the problem of deciding the connectedness of the 3-colour graph of a bipartite graph is coNP-complete, but that restricted to planar bipartite graphs, the question is answerable in polynomial time.
56#
發(fā)表于 2025-3-31 05:58:40 | 只看該作者
Tree-Width and Optimization in Bounded Degree Graphs,ph problems – dominating set, independent dominating set and induced matching – and obtain several results toward revealing the equivalency between boundedness of the tree-width and polynomial-time solvability of these problems in bounded degree graphs.
57#
發(fā)表于 2025-3-31 11:06:47 | 只看該作者
58#
發(fā)表于 2025-3-31 15:44:26 | 只看該作者
On Finding Graph Clusterings with Maximum Modularity,hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomaration approach.
59#
發(fā)表于 2025-3-31 20:55:37 | 只看該作者
Mixing 3-Colourings in Bipartite Graphs,?. is connected. We also show that the problem of deciding the connectedness of the 3-colour graph of a bipartite graph is coNP-complete, but that restricted to planar bipartite graphs, the question is answerable in polynomial time.
60#
發(fā)表于 2025-4-1 01:17:51 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东至县| 方城县| 凤山县| 大竹县| 赫章县| 鸡泽县| 丰都县| 广平县| 兴安盟| 得荣县| 金川县| 禹州市| 沙坪坝区| 苍梧县| 雅安市| 沙雅县| 康定县| 罗平县| 利辛县| 双城市| 青阳县| 大埔县| 太保市| 临泽县| 岳西县| 新津县| 定州市| 华蓥市| 松阳县| 汉川市| 海淀区| 永春县| 土默特左旗| 平果县| 临泉县| 兴山县| 林口县| 玉龙| 固原市| 阳朔县| 双城市|