找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 代表
31#
發(fā)表于 2025-3-26 21:24:18 | 只看該作者
32#
發(fā)表于 2025-3-27 01:58:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:12:10 | 只看該作者
34#
發(fā)表于 2025-3-27 09:25:55 | 只看該作者
https://doi.org/10.1007/978-3-476-04307-8hs over .(2). We propose here algebraic operations on graphs that characterize rank-width. For algorithmic purposes, it is important to represent graphs by balanced terms. We give a unique theorem that generalizes several “balancing theorems” for tree-width and clique-width. New results are obtained
35#
發(fā)表于 2025-3-27 14:03:14 | 只看該作者
https://doi.org/10.1007/978-3-658-40933-3(1.) the .-power graph of a tree has NLC-width at most .?+?2 and clique-width at most ., (2.) the .-leaf-power graph of a tree has NLC-width at most . and clique-width at most ., and (3.) the .-power graph of a graph of tree-width . has NLC-width at most (.?+?1).??1 and clique-width at most 2·(.?+?1
36#
發(fā)表于 2025-3-27 21:35:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:45:51 | 只看該作者
Markus Mangiapane,Roman P. Büchler., graphs that are both comparability and cocomparability graphs, it is known that minimal triangulations are interval graphs. We (negatively) answer the question whether every interval graph is a minimal triangulation of a permutation graph. We give a non-trivial characterisation of the class of in
38#
發(fā)表于 2025-3-28 03:24:24 | 只看該作者
39#
發(fā)表于 2025-3-28 06:29:00 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:43 | 只看該作者
https://doi.org/10.1007/978-3-662-08810-4planar drawings of planar graphs can be realized in .(..) area [9]. In this paper we consider families of DAGs that naturally arise in practice, like DAGs whose underlying graph is a tree (.), is a bipartite graph (.), or is an outerplanar graph (.). Concerning ., we show that optimal .(. log.) area
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
六枝特区| 招远市| 陈巴尔虎旗| 合山市| 伊春市| 华亭县| 南宫市| 出国| 博客| 富源县| 个旧市| 枣强县| 隆子县| 甘泉县| 红桥区| 定日县| 长丰县| 金塔县| 霍林郭勒市| 湖州市| 昭苏县| 五家渠市| 遂溪县| 岗巴县| 京山县| 隆化县| 沙洋县| 彰武县| 建宁县| 云梦县| 中江县| 贵南县| 阜平县| 临武县| 宾川县| 榆林市| 宝兴县| 北海市| 临泉县| 双峰县| 晴隆县|