找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: sesamoiditis
21#
發(fā)表于 2025-3-25 07:02:49 | 只看該作者
22#
發(fā)表于 2025-3-25 09:48:14 | 只看該作者
https://doi.org/10.1007/978-3-662-28408-7lecular property prediction, cancer classification, fraud detection, or knowledge graph reasoning. With the increasing number of GNN models deployed in scientific applications, safety-critical environments, or decision-making contexts involving humans, it is crucial to ensure their reliability. In t
23#
發(fā)表于 2025-3-25 14:32:32 | 只看該作者
Mikroskopie und Chemie am Krankenbettpter gives an overview of GNNs for graph classification, i.e., GNNs that learn a graphlevel output. Since GNNs compute node-level representations, pooling layers, i.e., layers that learn graph-level representations from node-level representations, are crucial components for successful graph classifi
24#
發(fā)表于 2025-3-25 19:20:09 | 只看該作者
Mikroskopie und Chemie am Krankenbett widely used in social networks, citation networks, biological networks, recommender systems, and security, etc. Traditional link prediction methods rely on heuristic node similarity scores, latent embeddings of nodes, or explicit node features. Graph neural network (GNN), as a powerful tool for joi
25#
發(fā)表于 2025-3-25 22:33:34 | 只看該作者
Mikroskopie und Chemie am Krankenbettl. Then we introduce several representative modern graph generative models that leverage deep learning techniques like graph neural networks, variational auto-encoders, deep auto-regressive models, and generative adversarial networks. At last, we conclude the chapter with a discussion on potential f
26#
發(fā)表于 2025-3-26 00:20:40 | 只看該作者
27#
發(fā)表于 2025-3-26 06:29:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:35:52 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:53 | 只看該作者
30#
發(fā)表于 2025-3-26 19:41:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常山县| 云阳县| 台江县| 浦北县| 石景山区| 浦北县| 全椒县| 永仁县| 四会市| 巩义市| 柞水县| 高要市| 阿荣旗| 台安县| 谷城县| 南皮县| 珠海市| 台北市| 梧州市| 阜南县| 禹城市| 道真| 安平县| 时尚| 麻城市| 哈巴河县| 绵阳市| 高清| 拜泉县| 新宁县| 油尖旺区| 东莞市| 舟曲县| 玉环县| 滨海县| 花垣县| 饶平县| 新安县| 内黄县| 巨野县| 福鼎市|