找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 16668|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:48:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications
編輯Lingfei Wu,Peng Cui,Liang Zhao
視頻videohttp://file.papertrans.cn/388/387931/387931.mp4
圖書封面Titlebook: ;
出版日期Book 2022
版次1
doihttps://doi.org/10.1007/978-981-16-6054-2
isbn_softcover978-981-16-6056-6
isbn_ebook978-981-16-6054-2
The information of publication is updating

書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications影響因子(影響力)




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications影響因子(影響力)學(xué)科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications網(wǎng)絡(luò)公開度




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications被引頻次




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications被引頻次學(xué)科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications年度引用




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications年度引用學(xué)科排名




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications讀者反饋




書目名稱Graph Neural Networks: Foundations, Frontiers, and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:39:44 | 只看該作者
地板
發(fā)表于 2025-3-22 08:14:33 | 只看該作者
The Expressive Power of Graph Neural Networkshniques to overcome these limitations, such as injecting random attributes, injecting deterministic distance attributes, and building higher-order GNNs. We will present the key insights of these techniques and highlight their advantages and disadvantages.
5#
發(fā)表于 2025-3-22 11:44:44 | 只看該作者
6#
發(fā)表于 2025-3-22 14:27:23 | 只看該作者
Graph Neural Networks: Graph Transformationegories, namely node-level transformation, edge-level transformation, node-edge co-transformation, as well as other graph-involved transformations (e.g., sequenceto- graph transformation and context-to-graph transformation), which are discussed in Section 12.2 to Section 12.5, respectively. In each
7#
發(fā)表于 2025-3-22 18:36:06 | 只看該作者
8#
發(fā)表于 2025-3-22 21:44:06 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:31 | 只看該作者
10#
發(fā)表于 2025-3-23 06:23:30 | 只看該作者
https://doi.org/10.1007/978-3-662-36442-0hniques to overcome these limitations, such as injecting random attributes, injecting deterministic distance attributes, and building higher-order GNNs. We will present the key insights of these techniques and highlight their advantages and disadvantages.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿州市| 遂宁市| 堆龙德庆县| 九寨沟县| 拉孜县| 石阡县| 黄浦区| 丹棱县| 区。| 宽城| 华亭县| 连城县| 和顺县| 锦屏县| 武汉市| 武城县| 芜湖市| 务川| 搜索| 宣恩县| 株洲县| 衡水市| 偃师市| 石狮市| 凌源市| 新宁县| 酒泉市| 湖口县| 克拉玛依市| 新和县| 滁州市| 朔州市| 普陀区| 全椒县| 苏尼特右旗| 石阡县| 外汇| 鲁山县| 台中市| 昭平县| 青冈县|