找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 共用
21#
發(fā)表于 2025-3-25 05:06:41 | 只看該作者
22#
發(fā)表于 2025-3-25 11:04:49 | 只看該作者
From Tutte to Floater and Gotsman: On the Resolution of Planar Straight-Line Drawings and Morphs-line morphs are among the most popular graph drawing algorithms. Surprisingly, little is known about the resolution of the drawings they produce. In this paper, focusing on maximal plane graphs, we prove tight bounds on the resolution of the planar straight-line drawings produced by Floater’s algor
23#
發(fā)表于 2025-3-25 11:39:06 | 只看該作者
24#
發(fā)表于 2025-3-25 15:57:20 | 只看該作者
25#
發(fā)表于 2025-3-25 22:18:54 | 只看該作者
Upward Planar Drawings with?Three and?More Slopesgraph with maximum in- and outdegree at most . admits such a drawing with . slopes. We show that this is in general NP-hard to decide for outerplanar graphs (.) and planar graphs (.). On the positive side, for cactus graphs deciding and constructing a drawing can be done in polynomial time. Furtherm
26#
發(fā)表于 2025-3-26 02:21:38 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:25:15 | 只看該作者
29#
發(fā)表于 2025-3-26 12:59:24 | 只看該作者
A Framework of Microtectonic Studies, of a planarization, i.e., a planar representation of a graph with crossings replaced by dummy vertices. The evaluated heuristics include variations and combinations of the well-known planarization method, the recently implemented star reinsertion method, and a new approach proposed herein: the mixe
30#
發(fā)表于 2025-3-26 18:47:32 | 只看該作者
https://doi.org/10.1007/978-3-642-96436-7rarily and the other edges towards . results in a consistent orientation of the crossings. So far, fan-planar drawings have only been considered in the context of simple drawings, where any two edges share at most one point, including endpoints. We show that every non-simple fan-planar drawing can b
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庄浪县| 扬中市| 沭阳县| 海林市| 沙坪坝区| 江都市| 十堰市| 宜春市| 清远市| 定远县| 冀州市| 九江市| 电白县| 城口县| 年辖:市辖区| 芒康县| 巴南区| 卢氏县| 怀来县| 南丰县| 苏尼特右旗| 芦溪县| 汕头市| 新乡市| 华池县| 渭源县| 政和县| 治县。| 承德市| 哈尔滨市| 江永县| 扎兰屯市| 通化市| 沙田区| 马关县| 松原市| 武邑县| 离岛区| 延川县| 大厂| 日照市|