找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
查看: 12721|回復: 56
樓主
發(fā)表于 2025-3-21 16:58:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Graph Drawing and Network Visualization
編輯Helen C. Purchase,Ignaz Rutter
視頻videohttp://file.papertrans.cn/388/387914/387914.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: ;
出版日期Conference proceedings 2021
版次1
doihttps://doi.org/10.1007/978-3-030-92931-2
isbn_softcover978-3-030-92930-5
isbn_ebook978-3-030-92931-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
The information of publication is updating

書目名稱Graph Drawing and Network Visualization影響因子(影響力)




書目名稱Graph Drawing and Network Visualization影響因子(影響力)學科排名




書目名稱Graph Drawing and Network Visualization網(wǎng)絡(luò)公開度




書目名稱Graph Drawing and Network Visualization網(wǎng)絡(luò)公開度學科排名




書目名稱Graph Drawing and Network Visualization被引頻次




書目名稱Graph Drawing and Network Visualization被引頻次學科排名




書目名稱Graph Drawing and Network Visualization年度引用




書目名稱Graph Drawing and Network Visualization年度引用學科排名




書目名稱Graph Drawing and Network Visualization讀者反饋




書目名稱Graph Drawing and Network Visualization讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:55:55 | 只看該作者
Upward Planar Drawings with?Three and?More Slopesgraphs (.) and planar graphs (.). On the positive side, for cactus graphs deciding and constructing a drawing can be done in polynomial time. Furthermore, we can determine the minimum number of slopes required for a given tree in linear time and compute the corresponding drawing efficiently.
板凳
發(fā)表于 2025-3-22 04:18:04 | 只看該作者
地板
發(fā)表于 2025-3-22 06:23:11 | 只看該作者
G. Kompa,M. Schlechtweg,F. van Raaygraphs (.) and planar graphs (.). On the positive side, for cactus graphs deciding and constructing a drawing can be done in polynomial time. Furthermore, we can determine the minimum number of slopes required for a given tree in linear time and compute the corresponding drawing efficiently.
5#
發(fā)表于 2025-3-22 10:49:04 | 只看該作者
Roderick G. Lamond,Norman L. Chater picture is less complete. As expected, the recognition problem has been found to be NP-complete in general. In this paper, we consider the recognition of simple optimal 2-planar graphs. We exploit a combinatorial characterization of such graphs and present a linear time algorithm for recognition and embedding.
6#
發(fā)表于 2025-3-22 15:16:41 | 只看該作者
Recognizing and Embedding Simple Optimal 2-Planar Graphs picture is less complete. As expected, the recognition problem has been found to be NP-complete in general. In this paper, we consider the recognition of simple optimal 2-planar graphs. We exploit a combinatorial characterization of such graphs and present a linear time algorithm for recognition and embedding.
7#
發(fā)表于 2025-3-22 19:18:34 | 只看該作者
8#
發(fā)表于 2025-3-23 00:30:36 | 只看該作者
Edge-Minimum Saturated ,-Planar Drawingsmber of edges among all .-vertex saturated .-planar drawings in many natural classes. For example, when incident crossings, multicrossings and selfcrossings are all allowed, the sparsest .-vertex saturated .-planar drawings have . edges for any ., while if all that is forbidden, the sparsest such drawings have . edges for any ..
9#
發(fā)表于 2025-3-23 02:33:52 | 只看該作者
10#
發(fā)表于 2025-3-23 05:42:19 | 只看該作者
A Framework of Microtectonic Studies,ings between adjacent edges or multiple crossings between the same two edges). The most notable finding, however, is that the insertion of stars in a fixed embedding setting is not only significantly faster than the insertion of edges in a variable embedding setting, but also leads to solutions of higher quality.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
紫云| 山东| 凤凰县| 海宁市| 永安市| 定南县| 阳西县| 金塔县| 得荣县| 安福县| 遵义市| 西乌珠穆沁旗| 陆丰市| 汪清县| 开远市| 隆化县| 陵川县| 南江县| 台湾省| 石城县| 昆明市| 九龙城区| 固安县| 巴林右旗| 遵义市| 鹤山市| 屏东市| 米脂县| 沙田区| 博野县| 孝昌县| 无棣县| 疏勒县| 大兴区| 临汾市| 克拉玛依市| 漠河县| 玉龙| 十堰市| 兴宁市| 即墨市|