找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: FARCE
51#
發(fā)表于 2025-3-30 10:44:13 | 只看該作者
52#
發(fā)表于 2025-3-30 16:12:18 | 只看該作者
53#
發(fā)表于 2025-3-30 18:09:38 | 只看該作者
Microelectronics Packaging Handbookds on a nonuniform density function. We, therefore, have to generalize the theory of area universal floorplans to this situation. The method is then used to prove a result about accommodating points in floorplans that is slightly more general than the conjecture of Ackerman et al.
54#
發(fā)表于 2025-3-30 21:43:50 | 只看該作者
55#
發(fā)表于 2025-3-31 03:28:38 | 只看該作者
Microelectronics Packaging Handbookerns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
56#
發(fā)表于 2025-3-31 08:28:18 | 只看該作者
Upward Planarity Testing: A Computational Studyint of view, but have never been implemented. For the first time, we give an extensive experimental comparison between virtually all known approaches to the problem..Furthermore, we present a new SAT formulation based on a recent theoretical result by Fulek et al. [8], which turns out to perform best among all known algorithms.
57#
發(fā)表于 2025-3-31 12:04:56 | 只看該作者
Superpatterns and Universal Point Setserns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
58#
發(fā)表于 2025-3-31 14:07:06 | 只看該作者
Strip Planarity Testingas strong relationships with some of the most deeply studied variants of the planarity testing problem, such as ., ., and .. We show that the problem is polynomial-time solvable if . has a fixed planar embedding.
59#
發(fā)表于 2025-3-31 17:48:12 | 只看該作者
60#
發(fā)表于 2025-4-1 01:32:21 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江川县| 镇平县| 曲沃县| 杂多县| 北碚区| 醴陵市| 林甸县| 溧水县| 吉林市| 体育| 仁寿县| 寻乌县| 府谷县| 仙居县| 手游| 云阳县| 土默特右旗| 河池市| 景德镇市| 大宁县| 钟祥市| 武乡县| 江北区| 洪洞县| 新沂市| 大余县| 彰化县| 仙桃市| 澄江县| 咸阳市| 黄浦区| 增城市| 永寿县| 察隅县| 讷河市| 深圳市| 湄潭县| 冕宁县| 交口县| 栾城县| 东光县|