找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: FARCE
31#
發(fā)表于 2025-3-27 00:17:36 | 只看該作者
Michael R. Hammock,J. Wilson Mixonanar drawing of . exists such that each edge is monotone in the .-direction and, for any .,.?∈?. with .(.)?
32#
發(fā)表于 2025-3-27 02:20:11 | 只看該作者
Microeconomic Theory for the Social Sciencesarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any
33#
發(fā)表于 2025-3-27 08:28:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:50:56 | 只看該作者
35#
發(fā)表于 2025-3-27 16:36:45 | 只看該作者
36#
發(fā)表于 2025-3-27 17:49:12 | 只看該作者
https://doi.org/10.1007/978-3-319-47587-5s in a .-quasi-planar graph on . vertices is .(.). Fox and Pach showed that every .-quasi-planar graph with . vertices and no pair of edges intersecting in more than .(1) points has at most .(log.). edges. We improve this upper bound to ., where .(.) denotes the inverse Ackermann function, and . dep
37#
發(fā)表于 2025-3-28 00:23:57 | 只看該作者
Alexander E. Popugaev,Rainer Wanschaphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recognition is .-hard..Our main result is a linear-time algorithm that first tests whether a graph?. is ., and then computes an embedding. Moreover, the algorithm can augment . to a maxim
38#
發(fā)表于 2025-3-28 05:11:12 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:19 | 只看該作者
Timing Methods and Programmable Timers,ntation extension problem for circle graphs, where the input consists of a graph . and a partial representation . giving some pre-drawn chords that represent an induced subgraph of .. The question is whether one can extend . to a representation . of the entire ., i.e., whether one can draw the remai
40#
發(fā)表于 2025-3-28 11:58:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广丰县| 霍山县| 收藏| 民丰县| 砀山县| 永吉县| 厦门市| 雅江县| 拜城县| 五台县| 江华| 江源县| 西平县| 东乌珠穆沁旗| 桦川县| 澎湖县| 中西区| 科技| 达拉特旗| 韶关市| 连平县| 玉门市| 馆陶县| 彩票| 彭州市| 宁远县| 辽宁省| 油尖旺区| 电白县| 江永县| 盐边县| 武宣县| 武川县| 色达县| 江津市| 乾安县| 仪征市| 扶绥县| 如皋市| 洛南县| 德兴市|