找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: FARCE
51#
發(fā)表于 2025-3-30 10:44:13 | 只看該作者
52#
發(fā)表于 2025-3-30 16:12:18 | 只看該作者
53#
發(fā)表于 2025-3-30 18:09:38 | 只看該作者
Microelectronics Packaging Handbookds on a nonuniform density function. We, therefore, have to generalize the theory of area universal floorplans to this situation. The method is then used to prove a result about accommodating points in floorplans that is slightly more general than the conjecture of Ackerman et al.
54#
發(fā)表于 2025-3-30 21:43:50 | 只看該作者
55#
發(fā)表于 2025-3-31 03:28:38 | 只看該作者
Microelectronics Packaging Handbookerns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
56#
發(fā)表于 2025-3-31 08:28:18 | 只看該作者
Upward Planarity Testing: A Computational Studyint of view, but have never been implemented. For the first time, we give an extensive experimental comparison between virtually all known approaches to the problem..Furthermore, we present a new SAT formulation based on a recent theoretical result by Fulek et al. [8], which turns out to perform best among all known algorithms.
57#
發(fā)表于 2025-3-31 12:04:56 | 只看該作者
Superpatterns and Universal Point Setserns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
58#
發(fā)表于 2025-3-31 14:07:06 | 只看該作者
Strip Planarity Testingas strong relationships with some of the most deeply studied variants of the planarity testing problem, such as ., ., and .. We show that the problem is polynomial-time solvable if . has a fixed planar embedding.
59#
發(fā)表于 2025-3-31 17:48:12 | 只看該作者
60#
發(fā)表于 2025-4-1 01:32:21 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
山东| 宜章县| 新河县| 遵化市| 镶黄旗| 顺昌县| 海原县| 万州区| 嘉鱼县| 五常市| 昆明市| 陈巴尔虎旗| 隆德县| 衡南县| 阜康市| 合阳县| 延津县| 绥江县| 穆棱市| 定边县| 巨鹿县| 达尔| 舟山市| 离岛区| 松溪县| 肥城市| 石渠县| 屏东市| 苏尼特右旗| 邵武市| 普兰县| 砚山县| 堆龙德庆县| 临洮县| 天峻县| 永修县| 恩平市| 郑州市| 内江市| 河池市| 盐边县|