找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: FARCE
11#
發(fā)表于 2025-3-23 13:35:50 | 只看該作者
Upward Planarity Testing: A Computational Studyictly monotonously increasing .-coordinates. Testing whether a graph allows such a drawing is known to be NP-complete, but there is a substantial collection of different algorithmic approaches known in literature..In this paper, we give an overview of the known algorithms, ranging from combinatorial
12#
發(fā)表于 2025-3-23 16:08:33 | 只看該作者
13#
發(fā)表于 2025-3-23 21:02:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:07:29 | 只看該作者
Morphing Planar Graph Drawings Efficientlyarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any
15#
發(fā)表于 2025-3-24 02:43:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:39 | 只看該作者
A Linear-Time Algorithm for Testing Outer-1-Planaritye outer face and each edge has at most one crossing. We present a linear time algorithm to test whether a graph is outer-1-planar. The algorithm can be used to produce an outer-1-planar embedding in linear time if it exists.
17#
發(fā)表于 2025-3-24 10:51:45 | 只看該作者
Straight-Line Grid Drawings of 3-Connected 1-Planar Graphse drawings. We show that every 3-connected 1-planar graph has a straight-line drawing on an integer grid of quadratic size, with the exception of a single edge on the outer face that has one bend. The drawing can be computed in linear time from any given 1-planar embedding of the graph.
18#
發(fā)表于 2025-3-24 18:14:54 | 只看該作者
New Bounds on the Maximum Number of Edges in ,-Quasi-Planar Graphss in a .-quasi-planar graph on . vertices is .(.). Fox and Pach showed that every .-quasi-planar graph with . vertices and no pair of edges intersecting in more than .(1) points has at most .(log.). edges. We improve this upper bound to ., where .(.) denotes the inverse Ackermann function, and . dep
19#
發(fā)表于 2025-3-24 22:06:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:48 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
普陀区| 江门市| 巴南区| 烟台市| 无为县| 郁南县| 余干县| 临沧市| 黔西县| 邵武市| 沛县| 贡山| 孟州市| 通榆县| 鄂州市| 许昌县| 尉犁县| 星子县| 化隆| 汉寿县| 广安市| 靖江市| 当雄县| 沭阳县| 莲花县| 新野县| 道真| 寻乌县| 仲巴县| 兰西县| 惠来县| 香河县| 潜山县| 德格县| 峨边| 新民市| 汨罗市| 武城县| 隆回县| 蓝山县| 竹山县|