找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復(fù)制鏈接]
樓主: 大口水罐
51#
發(fā)表于 2025-3-30 08:28:29 | 只看該作者
Mean Derivatives in Linear Spaceselson, ., .). This notion was first introduced by E. Nelson (., ., .) for the needs of so-called stochastic mechanics (see Chapter 15) but it turns out to be useful in some other problems of mathematical physics, economics, and elsewhere.
52#
發(fā)表于 2025-3-30 13:20:40 | 只看該作者
Hydrodynamics,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
53#
發(fā)表于 2025-3-30 17:52:52 | 只看該作者
54#
發(fā)表于 2025-3-30 23:13:16 | 只看該作者
Kurzes Lehrbuch der Physiologischen ChemieIn this chapter we survey some notions in the theory of set-valued mappings which will be used below for the description of complicated mechanical systems such as systems with discontinuous forces, with control, etc.
55#
發(fā)表于 2025-3-31 04:41:21 | 只看該作者
Wolfgang Bühler,Hermann Gehring,Horst GlaserLet . be a finite-dimensional manifold. Recall that on the manifold . there is a vertical distribution . (a sub-bundle of the second tangent bundle .) whose fibers consist of vectors tangent to the fibers of .. The vectors belonging to . are said to be . (see Section 2.1).
56#
發(fā)表于 2025-3-31 05:43:49 | 只看該作者
Der gesunde Mensch (physische Hygiene),The Newton-Nelson equation is a version of Newton’s law formulated in terms of mixed symmetric second order mean derivatives. It describes the motion of a quantum particle in the framework of stochastic mechanics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
边坝县| 遂川县| 前郭尔| 汶川县| 岚皋县| 开鲁县| 广南县| 深水埗区| 新乐市| 富民县| 天等县| 旅游| 临泽县| 桃园市| 晋宁县| 梓潼县| 宿松县| 莱州市| 乌兰浩特市| 诸城市| 营口市| 乌什县| 洛阳市| 吉水县| 宁南县| 灵璧县| 临泽县| 辽宁省| 富川| 德安县| 视频| 嵊泗县| 洛南县| 沈丘县| 大英县| 宽城| 安图县| 普宁市| 岳普湖县| 长垣县| 昭通市|