找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復(fù)制鏈接]
樓主: 大口水罐
21#
發(fā)表于 2025-3-25 03:47:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:48:59 | 只看該作者
Some Problems on Lorentz Manifoldsy and to describe the relativistic problems discussed below. We are mainly interested in the constructions of general relativity, the formulae of special relativity arising as consequences of the latter. Since the exposition is intended for mathematicians, we present it axiomatically, starting from
23#
發(fā)表于 2025-3-25 14:56:22 | 只看該作者
24#
發(fā)表于 2025-3-25 17:51:26 | 只看該作者
Hydrodynamics,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
25#
發(fā)表于 2025-3-25 21:47:59 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:30 | 只看該作者
1864-5879 ss common treatment for areas of mathematical physics tradit.

Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is f

27#
發(fā)表于 2025-3-26 06:42:05 | 只看該作者
28#
發(fā)表于 2025-3-26 12:09:38 | 只看該作者
29#
發(fā)表于 2025-3-26 15:36:34 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:51 | 只看該作者
https://doi.org/10.1007/978-3-663-04195-5e description of this theory requires a complicated functional-analytic machinery that is not included in our exposition. For simplicity of presentation, we restrict ourselves to the finite-dimensional version of the theory since, in applications, the theories yield very similar results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常山县| 延庆县| 台中县| 正阳县| 洞口县| 星座| 宁晋县| 榆林市| 曲阳县| 宣城市| 双峰县| 永善县| 澄城县| 观塘区| 通山县| 错那县| 确山县| 临泽县| 法库县| 东平县| 克东县| 屏东县| 织金县| 巨野县| 铜鼓县| 喀什市| 陆河县| 南康市| 莒南县| 易门县| 彝良县| 夏邑县| 栾城县| 昭平县| 长岭县| 鄢陵县| 娱乐| 新干县| 赞皇县| 石柱| 灵石县|