找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Surfaces; John Stillwell Textbook 1992 Springer Science+Business Media New York 1992 Area.Fractal.curvature.differential geome

[復(fù)制鏈接]
樓主: 關(guān)稅
21#
發(fā)表于 2025-3-25 04:57:51 | 只看該作者
Von der Zerlegung der Zahlen in Teile,uch a surface would resemble ?. when extended indefinitely, even if small parts of it matched small parts of ?. with absolute precision. Indeed, we may never know enough about the large-scale structure of the universe to say what an unbounded flat surface would really be like. What we can do, however, is find which flat surfaces are . possible.
22#
發(fā)表于 2025-3-25 09:09:14 | 只看該作者
https://doi.org/10.1007/978-3-662-25901-6 local isometry between the line and the unit circle. The sphere, on the other hand, is . locally isometric to the plane, hence it is of interest as a self-contained structure. This intrinsic structure makes the sphere the first example of a non-euclidean geometry.
23#
發(fā)表于 2025-3-25 12:34:35 | 只看該作者
,Die Gr??enordnung der Kardinalzahlen,d-for-word (provided “l(fā)ine”, “distance” etc., are understood in the hyperbolic sense), showing that any complete, connected hyperbolic surface is of the form ?./Γ, where Γ is a discontinuous, fixed point free group of ?.-isometries.
24#
發(fā)表于 2025-3-25 16:45:51 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:13 | 只看該作者
27#
發(fā)表于 2025-3-26 04:52:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:44:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:51:38 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:54 | 只看該作者
Planar and Spherical Tessellations,ges). The isometries of . onto itself are called . of ., and they form a group called the . of . Thus, we are defining . to be symmetric if its symmetry group contains enough elements to map any tile onto any other tile.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜川市| 平陆县| 丁青县| 丹凤县| 普格县| 犍为县| 宿松县| 嵊州市| 内丘县| 武冈市| 凤冈县| 九龙县| 嘉兴市| 宜兰县| 文昌市| 榆社县| 翼城县| 合山市| 莎车县| 山西省| 屏山县| 东乡| 巴林左旗| 盐津县| 那坡县| 中阳县| 海宁市| 黄山市| 平顺县| 石楼县| 涞源县| 昌图县| 南木林县| 两当县| 杨浦区| 盖州市| 彰化市| 象山县| 监利县| 新宁县| 东港市|