找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Surfaces; John Stillwell Textbook 1992 Springer Science+Business Media New York 1992 Area.Fractal.curvature.differential geome

[復制鏈接]
樓主: 關(guān)稅
11#
發(fā)表于 2025-3-23 11:02:04 | 只看該作者
978-0-387-97743-0Springer Science+Business Media New York 1992
12#
發(fā)表于 2025-3-23 17:22:46 | 只看該作者
Geometry of Surfaces978-1-4612-0929-4Series ISSN 0172-5939 Series E-ISSN 2191-6675
13#
發(fā)表于 2025-3-23 18:45:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:06:11 | 只看該作者
Di- und triklinometrisches System,t . ? ., more than one line through . which does not meet . Such a surface departs from the euclidean plane in the opposite way to the sphere, and the hyperbolic plane, in fact, emerged from the study of surfaces which “curve” in the opposite way to the sphere. The train of thought, in brief, was this.
15#
發(fā)表于 2025-3-24 04:36:32 | 只看該作者
16#
發(fā)表于 2025-3-24 10:04:25 | 只看該作者
The Hyperbolic Plane,t . ? ., more than one line through . which does not meet . Such a surface departs from the euclidean plane in the opposite way to the sphere, and the hyperbolic plane, in fact, emerged from the study of surfaces which “curve” in the opposite way to the sphere. The train of thought, in brief, was this.
17#
發(fā)表于 2025-3-24 14:00:31 | 只看該作者
Tessellations of Compact Surfaces, sides of II according to the side pairing, is also an orbit space .Γ. Here . = . is S., ?., or ?.—the surface from which II originates—and Γ is the group generated by the side-pairing transformations of II. Because of its interpretation as an orbit space, . is also called an
18#
發(fā)表于 2025-3-24 18:48:37 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:10 | 只看該作者
The Euclidean Plane, properties of lines and circles as axioms and derived theorems from them by pure logic. Actually he occasionally made use of unstated axioms; nevertheless his approach is feasible and it was eventually made rigorous by Hubert [1899].
20#
發(fā)表于 2025-3-25 01:01:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
佳木斯市| 达拉特旗| 卢龙县| 宁武县| 阳谷县| 赤水市| 千阳县| 堆龙德庆县| 麻城市| 漳平市| 温宿县| 丹凤县| 宁津县| 金平| 蒙城县| 张家川| 永顺县| 新源县| 四会市| 进贤县| 措美县| 苏尼特左旗| 利津县| 晴隆县| 浦东新区| 札达县| 安丘市| 麻江县| 大庆市| 康定县| 崇文区| 九台市| 内乡县| 洪江市| 佛坪县| 都安| 阳原县| 安庆市| 禹城市| 玉山县| 砀山县|