找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Higher Dimensional Algebraic Varieties; Yoichi Miyaoka,Thomas Peternell Book 1997 Springer Basel AG 1997 Algebra.Complex analy

[復(fù)制鏈接]
樓主: 惡夢
11#
發(fā)表于 2025-3-23 11:40:59 | 只看該作者
Rationally Connected Fibrations and Applications structure provides us a splitting of a uniruled variety into rationally connected varieties and a non-uniruled variety. . is a natural generalization of unirationality, and in dimension two or three, we can completely characterize rationally connected varieties in terms of global holomorphic differ
12#
發(fā)表于 2025-3-23 16:46:07 | 只看該作者
Prerequisitesmentary knowlegde on spectral sequences as found in [GH78]. There are two more advanced tools not covered by these two books which will be used over and over: the theorem of Riemann-Roch on projective manifolds (see [Ha77]) and Hironaka’s desingularisation (see Hironaka’s original paper or, for refe
13#
發(fā)表于 2025-3-23 21:51:56 | 只看該作者
Book 1997ic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mat
14#
發(fā)表于 2025-3-23 23:13:06 | 只看該作者
Foliations and Purely Inseparable Coveringsties..What relates this new criterion of uniruledness in characteristic . to the one in characteristic zero is “semistability”. The theory of semistable torsion free sheaves will be discussed in the second section, including numerical characterizations of semistability (in characteristic zero) and i
15#
發(fā)表于 2025-3-24 02:55:21 | 只看該作者
Abundance for Minimal 3-Foldsibration is also essential in the argument..In Section 3, the non-negativity of the Kodaira dimension of a minimal threefold is proved. The key to the proof is the pseudo-effectivity of . proved in Lecture III. We are exceptionally lucky in this case, because the Todd classes involve only . and . in
16#
發(fā)表于 2025-3-24 07:17:43 | 只看該作者
Erhard Schütz,Jochen Vogt u. a.ties..What relates this new criterion of uniruledness in characteristic . to the one in characteristic zero is “semistability”. The theory of semistable torsion free sheaves will be discussed in the second section, including numerical characterizations of semistability (in characteristic zero) and i
17#
發(fā)表于 2025-3-24 13:27:58 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:04 | 只看該作者
1661-237X Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mat978-3-7643-5490-9978-3-0348-8893-6Series ISSN 1661-237X Series E-ISSN 2296-5041
19#
發(fā)表于 2025-3-24 20:57:16 | 只看該作者
Geometry of Higher Dimensional Algebraic Varieties
20#
發(fā)表于 2025-3-24 23:20:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-15 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江川县| 都昌县| 延庆县| 从江县| 石狮市| 永兴县| 利津县| 江陵县| 浠水县| 丹东市| 区。| 林州市| 延吉市| 孟连| 从化市| 峨山| 合肥市| 金昌市| 红安县| 正定县| 桂阳县| 普安县| 康平县| 定结县| 周口市| 凤翔县| 南平市| 平果县| 台湾省| 长兴县| 渝北区| 贡山| 新竹市| 峨山| 疏勒县| 肃宁县| 凤庆县| 祁门县| 剑阁县| 阿图什市| 通榆县|