找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Higher Dimensional Algebraic Varieties; Yoichi Miyaoka,Thomas Peternell Book 1997 Springer Basel AG 1997 Algebra.Complex analy

[復(fù)制鏈接]
查看: 22284|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:58:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties
編輯Yoichi Miyaoka,Thomas Peternell
視頻videohttp://file.papertrans.cn/384/383809/383809.mp4
叢書(shū)名稱Oberwolfach Seminars
圖書(shū)封面Titlebook: Geometry of Higher Dimensional Algebraic Varieties;  Yoichi Miyaoka,Thomas Peternell Book 1997 Springer Basel AG 1997 Algebra.Complex analy
描述This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub- ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex- plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mat
出版日期Book 1997
關(guān)鍵詞Algebra; Complex analysis; Manifold; algebraic geometry; algebraic varieties; calculus; complex analyisis;
版次1
doihttps://doi.org/10.1007/978-3-0348-8893-6
isbn_softcover978-3-7643-5490-9
isbn_ebook978-3-0348-8893-6Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel AG 1997
The information of publication is updating

書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties影響因子(影響力)




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties被引頻次




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties被引頻次學(xué)科排名




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties年度引用




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties年度引用學(xué)科排名




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties讀者反饋




書(shū)目名稱Geometry of Higher Dimensional Algebraic Varieties讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:16 | 只看該作者
Perioden der deutschen Sprachgeschichte,ential forms. Thanks to the MRC-fibrations, we get a classification of the complex uniruled threefolds into three clearly distinguished classes..Except in Section 5, all varieties in this section are defined over the complex numbers, and are often viewed as complex manifolds.
板凳
發(fā)表于 2025-3-22 04:12:56 | 只看該作者
地板
發(fā)表于 2025-3-22 06:46:28 | 只看該作者
Rationally Connected Fibrations and Applicationsential forms. Thanks to the MRC-fibrations, we get a classification of the complex uniruled threefolds into three clearly distinguished classes..Except in Section 5, all varieties in this section are defined over the complex numbers, and are often viewed as complex manifolds.
5#
發(fā)表于 2025-3-22 11:50:10 | 只看該作者
6#
發(fā)表于 2025-3-22 15:05:53 | 只看該作者
7#
發(fā)表于 2025-3-22 18:02:32 | 只看該作者
8#
發(fā)表于 2025-3-23 01:17:05 | 只看該作者
Construction of Non-Trivial Deformations via Frobeniusnal curves on smooth projective varieties whose canonical divisors are not nef..This technique, developed in the famous solution [Mori 1] of a conjecture of R. Hartshorne, was the starting point to the theory of extremal rays and minimal models. As one of its applications, we characterize a class of
9#
發(fā)表于 2025-3-23 04:05:28 | 只看該作者
Foliations and Purely Inseparable Coverings lecture, we discuss a refined characterization of such varieties in terms of the tangent bundle. Namely, a smooth projective variety in characteristic zero is uniruled unless its tangent bundle is almost everywhere seminegative..The proof of this result is made by using quotient varieties by foliat
10#
發(fā)表于 2025-3-23 05:36:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 炎陵县| 沾化县| 本溪市| 宜宾县| 海兴县| 集安市| 晋中市| 高雄县| SHOW| 万州区| 丁青县| 常德市| 沁阳市| 塔城市| 佛学| 黄大仙区| 张家界市| 靖宇县| 板桥市| 都昌县| 石城县| 高雄县| 黄山市| 昌都县| 北安市| 香格里拉县| 赣州市| 平原县| 文山县| 察哈| 洮南市| 涡阳县| 余庆县| 石柱| 汤阴县| 稷山县| 寻乌县| 阳谷县| 呼玛县| 宜阳县|