找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential

[復(fù)制鏈接]
樓主: necrosis
21#
發(fā)表于 2025-3-25 03:54:46 | 只看該作者
22#
發(fā)表于 2025-3-25 08:14:43 | 只看該作者
https://doi.org/10.1007/978-3-322-93587-8 observations. The first is that the canonical lift.of a Riemannian foliation . to the bundle. of orthonormal frames of .is a transversally parallelizable Riemannian foliation. The canonical lift. on.is a foliation of the same dimension as . on ., and invariant under the action of the orthogonal str
23#
發(fā)表于 2025-3-25 14:07:17 | 只看該作者
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
24#
發(fā)表于 2025-3-25 17:49:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:02 | 只看該作者
26#
發(fā)表于 2025-3-26 00:58:06 | 只看該作者
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
27#
發(fā)表于 2025-3-26 07:43:58 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:05 | 只看該作者
Cohomology Vanishing and Tautness,d on the positivity of certain curvature expressions. The Weitzenb?ck formula for the transversal Laplacian Δ. has, aside from the usual terms, correction terms involving the mean curvature, which interfere with the usual arguments leading to vanishing theorems.
29#
發(fā)表于 2025-3-26 12:45:54 | 只看該作者
30#
發(fā)表于 2025-3-26 16:59:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南陵县| 东莞市| 肇庆市| 贡觉县| 保山市| 泗洪县| 文登市| 连云港市| 克什克腾旗| 万宁市| 钟山县| 江阴市| 两当县| 永平县| 闽清县| 台南县| 安乡县| 无极县| 旺苍县| 临漳县| 分宜县| 云南省| 武义县| 白玉县| 固安县| 长沙县| 兴业县| 民乐县| 临泉县| 楚雄市| 沁源县| 嘉善县| 射洪县| 类乌齐县| 新余市| 马山县| 德格县| 连州市| 庆云县| 广昌县| 吉水县|