找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential

[復制鏈接]
樓主: necrosis
31#
發(fā)表于 2025-3-26 23:03:01 | 只看該作者
32#
發(fā)表于 2025-3-27 04:15:47 | 只看該作者
Basic Forms, Spectral Sequence, Characteristic Form,nctions.are independent of.i.e..The exterior derivative preserves basic forms, since.for w basic. Thus the set.of all basic forms constitutes a subcomplex.of the De Rham complex.We also denote.Ω.=.Its cohomology.is the basic cohomology of .. It plays the role of the De Rham cohomology of the leaf sp
33#
發(fā)表于 2025-3-27 08:13:48 | 只看該作者
34#
發(fā)表于 2025-3-27 10:12:31 | 只看該作者
Structure of Riemannian Foliations, observations. The first is that the canonical lift.of a Riemannian foliation . to the bundle. of orthonormal frames of .is a transversally parallelizable Riemannian foliation. The canonical lift. on.is a foliation of the same dimension as . on ., and invariant under the action of the orthogonal str
35#
發(fā)表于 2025-3-27 15:27:02 | 只看該作者
36#
發(fā)表于 2025-3-27 19:01:48 | 只看該作者
37#
發(fā)表于 2025-3-27 22:44:36 | 只看該作者
Examples and Definition of Foliations, the case of a foliation of . by the level hypersurfaces of a smooth function. → ?. The submersion condition is the requirement of the absence of critical points for . (this is of course only possible if . is not compact).
38#
發(fā)表于 2025-3-28 03:01:56 | 只看該作者
1017-0480 ion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de- voted to Hodge theory for
39#
發(fā)表于 2025-3-28 10:13:12 | 只看該作者
Book 1997 basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de- voted to Hodge theory for the trans
40#
發(fā)表于 2025-3-28 11:12:42 | 只看該作者
Holonomy, Second Fundamental Form, Mean Curvature, space of the fibration ? × .? →.with (.,.) ~ (. + ., (-1) .) being the equivalence relation defining the total space. The leaves are circles, which are 2-fold coverings of the central circle . = 0, except for the central circle itself. If . = . and .:.→ . is the rotation through an angle ., then th
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 10:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
遂溪县| 钦州市| 应城市| 都江堰市| 乌鲁木齐县| 通许县| 新密市| 潜江市| 海口市| 东丰县| 沅陵县| 枣庄市| 黄冈市| 宁德市| 峡江县| 九台市| 延寿县| 徐水县| 岐山县| 天峨县| 沂水县| 海宁市| 平泉县| 乌苏市| 海兴县| 庄浪县| 溆浦县| 历史| 罗甸县| 花垣县| 伽师县| 松潘县| 弋阳县| 仙桃市| 河西区| 青神县| 巴彦县| 雷山县| 农安县| 东兰县| 昭通市|