找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and its Applications; Vladimir Rovenski,Pawe? Walczak Conference proceedings 2014 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: Osteopenia
21#
發(fā)表于 2025-3-25 04:25:44 | 只看該作者
https://doi.org/10.1007/978-3-7091-9903-9 orthogonal to the leaf, .(., .) is the mean value of sectional curvatures over all mixed planes containing .. The flow preserves total umbilicity, total geodesy, and harmonicity of foliations. It is used to examine the question: Which foliations admit a metric with a given property of mixed section
22#
發(fā)表于 2025-3-25 08:20:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:44:33 | 只看該作者
Einführung in die pathologische Physiologie existing . and . jet shapes and also predicts the existence of periodic shape. However, sufficient simplifications of mathematical models of the flow details were made: the effects of the forces of surface tension of the longitudinal motion and the variability of the tangential velocity component o
24#
發(fā)表于 2025-3-25 18:49:15 | 只看該作者
https://doi.org/10.1007/978-3-7091-3516-7e value on any subset . of positive measure in [?1, 1]. Similarly, in several variables the maximum of the absolute value of a polynomial .(.) of degree . on the unit ball . can be bounded through the maximum of its absolute value on any subset . ? ... of positive .-measure ..(.). In [11] a stronger
25#
發(fā)表于 2025-3-25 23:49:13 | 只看該作者
https://doi.org/10.1007/978-3-662-25926-9In this chapter we investigate the convergence of the mean curvature flow of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we prove that the flow deforms a closed submanifold with pinching condition to a “round point” in finite time.
26#
發(fā)表于 2025-3-26 02:53:50 | 只看該作者
https://doi.org/10.1007/978-3-642-51425-8In this paper we deal with two types of questions concerning the structure of foliations (or laminations) on compact spaces:.The two questions are related by the fact that exceptional minimal sets in codimension one present stronger generic constraints.
27#
發(fā)表于 2025-3-26 06:11:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:04 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:44 | 只看該作者
Pathophysiologie der Kopfschmerzen,We show existence of cycles in some special nonlinear 4-D and 5-D dynamical systems and construct in their phase portraits invariant surfaces containing these cycles. In the 5D case, we demonstrate non-uniqueness of the cycles. Some possible mechanisms of this non-uniqueness are described as well.
30#
發(fā)表于 2025-3-26 17:23:52 | 只看該作者
Gaussian Mean Curvature Flow for Submanifolds in Space FormsIn this chapter we investigate the convergence of the mean curvature flow of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we prove that the flow deforms a closed submanifold with pinching condition to a “round point” in finite time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
禹城市| 武隆县| 曲靖市| 永善县| 凤山县| 松江区| 阿拉尔市| 灵璧县| 当涂县| 呼图壁县| 嘉义县| 无极县| 南靖县| 将乐县| 怀柔区| 尼玛县| 阳山县| 丰城市| 星子县| 古交市| 平乡县| 施秉县| 古田县| 金阳县| 弋阳县| 永仁县| 昌乐县| 文山县| 巩义市| 关岭| 万宁市| 磐石市| 临猗县| 个旧市| 张北县| 龙山县| 和龙市| 图木舒克市| 建昌县| 昌吉市| 常宁市|