找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and its Applications; Vladimir Rovenski,Pawe? Walczak Conference proceedings 2014 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: Osteopenia
11#
發(fā)表于 2025-3-23 11:30:08 | 只看該作者
Einleitung: Bedeutung der PLL-Technik, only .(3) of constant curvature + 1 admits stable totally geodesic submanifolds of this kind. Restricting the variations to left-invariant (i.e., equidistant) ones, we give a complete list of groups which admit stable/unstable unit vector fields with totally geodesic image.
12#
發(fā)表于 2025-3-23 16:51:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:17 | 只看該作者
14#
發(fā)表于 2025-3-24 00:14:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:58 | 只看該作者
The Ricci Flow on Some Generalized Wallach Spacesingularity of all singular points of the normalized Ricci flow on all such spaces. Our main result gives a qualitative answer for almost all points . in the cube .. We also consider in detail some important partial cases.
16#
發(fā)表于 2025-3-24 06:32:52 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:17:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:08:23 | 只看該作者
https://doi.org/10.1007/978-3-662-42480-3tem. All nonsymmetric generalized Wallach spaces can be naturally parametrized by three positive numbers .. Our interest is to determine the type of singularity of all singular points of the normalized Ricci flow on all such spaces. Our main result gives a qualitative answer for almost all points .
20#
發(fā)表于 2025-3-25 03:13:23 | 只看該作者
Sheila R. Buxton,Stanley M. Robertsoportional to the mixed scalar curvature, Scal.. The flow preserves harmonicity of foliations and is used to examine the question: When does a foliation admit a metric with a given property of Scal. (e.g., positive/negative or constant)? If the mean curvature vector of . is leaf-wise conservative, t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西丰县| 海门市| 晋中市| 谷城县| 南丰县| 马尔康县| 盐山县| 宁陕县| 西昌市| 梅河口市| 盈江县| 嘉兴市| 类乌齐县| 昌邑市| 沿河| 西丰县| 南平市| 锦屏县| 临猗县| 衡阳县| 当涂县| 佛冈县| 靖边县| 鄂伦春自治旗| 盐亭县| 元氏县| 张家港市| 依安县| 荣成市| 富宁县| 紫云| 拜城县| 邢台市| 普洱| 安塞县| 皮山县| 峨眉山市| 腾冲县| 宝兴县| 青神县| 武宁县|