找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[復(fù)制鏈接]
樓主: DART
51#
發(fā)表于 2025-3-30 08:36:53 | 只看該作者
Einige physikalisch-chemische Grundlagen?.) is strongly K-stable in the sense of [.], we shall show that the balanced metrics have (BP). In a subsequent paper [.], this property (BP) plays a very important role in the study of the Yau-Tian-Donaldson conjecture for general polarizations.
52#
發(fā)表于 2025-3-30 14:18:34 | 只看該作者
https://doi.org/10.1007/978-3-642-49711-7olds, and show that it gives a coefficient of the divergent term of the mean curvature function. Moreover, we show that the product . called the product curvature (resp. . called normalized product curvature) of . (resp. .) and the limiting normal curvature . is an intrinsic invariant of the surface
53#
發(fā)表于 2025-3-30 19:38:00 | 只看該作者
Einige physikalisch-chemische Grundlagend by . the group of relative symplectomorphisms. There exists a short exact sequence involving with those groups, whose kernel is .. On such a group . one has a celebrated homomorphism called the Calabi invariant. By dividing the exact sequence by the kernel of the Calabi invariant, one obtains a ce
54#
發(fā)表于 2025-3-31 00:04:52 | 只看該作者
55#
發(fā)表于 2025-3-31 04:32:23 | 只看該作者
Grundbegriffe der Informationstheorie,nnections to the K-energy. We will also include proof for certain known results which may not have been well presented or less accessible in the literature. We always assume that . is a compact K?hler manifold. By a polarization, we mean a positive line bundle . over ., then we call (.,?.) a polariz
56#
發(fā)表于 2025-3-31 06:53:36 | 只看該作者
Akito Futaki,Reiko Miyaoka,Weiping ZhangShows recent development in.geometry and topology.Gives access to sophisticated.techniques in geometric analysis.Leads to future directions ofresearch in geometry and topology.Includes supplementary m
57#
發(fā)表于 2025-3-31 09:28:25 | 只看該作者
Geometry and Topology of Manifolds978-4-431-56021-0Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四子王旗| 兰考县| 阿图什市| 洛川县| 招远市| 清涧县| 晋城| 繁峙县| 建昌县| 台中县| 台江县| 宜昌市| 通州区| 平南县| 绥化市| 清镇市| 昆山市| 广安市| 天长市| 亚东县| 安图县| 长寿区| 桓台县| 施甸县| 寿宁县| 渭南市| 乳源| 丰城市| 若羌县| SHOW| 资源县| 卓尼县| 扬中市| 昌乐县| 年辖:市辖区| 青浦区| 隆德县| 道真| 马边| 腾冲县| 田东县|