找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[復(fù)制鏈接]
樓主: DART
41#
發(fā)表于 2025-3-28 18:36:48 | 只看該作者
42#
發(fā)表于 2025-3-28 21:21:40 | 只看該作者
43#
發(fā)表于 2025-3-29 00:43:16 | 只看該作者
Die Mikroprozessoren 8086 und 8088, surfaces especially, such data are holomorphic. We can regard this formula as an analogue (in Contact Riemannian Geometry) of . for minimal surfaces in .. Hence for minimal ones in ., there are many similar results to those for minimal surfaces in .. In particular, we prove a . for . minimal Legend
44#
發(fā)表于 2025-3-29 05:12:17 | 只看該作者
Hilfsmittel zur Programmentwicklung,ilizes the notion of linear stratification on the gluing bundles for the orbifold stratified spaces. We introduce a concept of good gluing structure to ensure a smooth structure on the stratified space. As an application, we provide an orbifold structure on the coarse moduli space . of stable genus
45#
發(fā)表于 2025-3-29 09:25:47 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:35 | 只看該作者
https://doi.org/10.1007/978-3-642-47616-7t is, self-shrinkers of mean curvature flow in Euclidean spaces and examples of compact self-shrinkers are discussed. We also review properties of critical points for weighted area functional for weighted volume-preserving variations, that is, .-hypersurfaces of weighted volume-preserving mean curva
47#
發(fā)表于 2025-3-29 19:14:22 | 只看該作者
48#
發(fā)表于 2025-3-29 20:56:15 | 只看該作者
49#
發(fā)表于 2025-3-30 02:18:31 | 只看該作者
50#
發(fā)表于 2025-3-30 06:36:51 | 只看該作者
Die sediment?re GesteinsbildungWe explain two main ingredients in our work. The first is the adjoint transform of Willmore surfaces introduced by the first author, which generalizes the dual Willmore surface construction. The second is the DPW method applied to Willmore surfaces whose conformal Gauss map is well-known to be a har
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额济纳旗| 涿鹿县| 专栏| 陵水| 吉水县| 屯昌县| 普兰县| 板桥市| 册亨县| 简阳市| 深水埗区| 闽侯县| 彭水| 娱乐| 新安县| 杭锦旗| 津南区| 明溪县| 乡城县| 阿瓦提县| 双桥区| 罗城| 山阳县| 错那县| 义马市| 关岭| 黄浦区| 宿迁市| 怀化市| 修武县| 颍上县| 三亚市| 门源| 革吉县| 宜川县| 呼玛县| 叶城县| 叙永县| 托里县| 调兵山市| 梅河口市|