找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 03:57:09 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:04 | 只看該作者
Diagnosis of Allergic Reactions to Drugs, the structural richness of the Euclidean space. This is in line with efforts made in the direction of extending the standard theory of Besov and Triebel-Lizorkin spaces to the geometric measure theoretic context of spaces of homogeneous type; see, e.g., [90],?[86],?[91],?[92],?[203],?[89],?[152],?and [206].
23#
發(fā)表于 2025-3-25 12:58:01 | 只看該作者
24#
發(fā)表于 2025-3-25 16:37:25 | 只看該作者
Banach Function Spaces, Extrapolation, and Orlicz Spaces,imal operator happens to be bounded. Finally, in §. we focus on Orlicz spaces which, in particular, are natural examples of classical Banach function spaces for which the machinery developed so far applies.
25#
發(fā)表于 2025-3-25 21:20:05 | 只看該作者
26#
發(fā)表于 2025-3-26 02:12:08 | 只看該作者
Luís Pereira Justo,Helena Maria Calilplicable to more general topological vector spaces (which are not necessarily locally convex). In §. we recall some basic results to this effect, obtained via a “dual-less” approach to Fredholm theory. Ultimately, this shows that the core principle of the theory, namely that . is pervasive.
27#
發(fā)表于 2025-3-26 06:10:28 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:28 | 只看該作者
Prachi Suman,Anupama Paul,Awanish Mishraspaces (of order one) in the Euclidean setting, based on ordinary weak derivatives. Such a compatibility reinforces the idea that this is indeed a natural generalization of the standard scale of Sobolev spaces from the (entire) Euclidean ambient to sets exhibiting a much more intricate geometry (bot
29#
發(fā)表于 2025-3-26 16:37:23 | 只看該作者
30#
發(fā)表于 2025-3-26 16:57:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁波市| 秦安县| 微山县| 河曲县| 荥经县| 弋阳县| 西贡区| 始兴县| 清镇市| 文化| 柏乡县| 铜川市| 海城市| 西贡区| 襄垣县| 来宾市| 花莲县| 舟山市| 措勤县| 邯郸县| 平顶山市| 海门市| 台中市| 阳西县| 肃南| 平原县| 珠海市| 理塘县| 长海县| 通化市| 临高县| 兴安盟| 固始县| 河南省| 丘北县| 华坪县| 资中县| 吴堡县| 榕江县| 英山县| 灌云县|