找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T

[復制鏈接]
查看: 52128|回復: 44
樓主
發(fā)表于 2025-3-21 20:02:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Harmonic Analysis II
副標題Function Spaces Meas
編輯Dorina Mitrea,Irina Mitrea,Marius Mitrea
視頻videohttp://file.papertrans.cn/384/383519/383519.mp4
概述Provides a systematics treatment of principal scales of function spaces in analysis.Builds a solid platform facilitating applications to singular integrals and boundary value problems.Methodically hig
叢書名稱Developments in Mathematics
圖書封面Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T
描述.This monograph is part of a larger program, materializing in five volumes, whose principal aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings..Volume II is concerned with function spaces measuring size and/or smoothness, such as Hardy spaces, Besov spaces, Triebel-Lizorkin spaces, Sobolev spaces, Morrey spaces, Morrey-Campanato spaces, spaces of functions of Bounded Mean Oscillations, etc., in general geometric settings. Work here also highlights the close interplay between differentiability properties of functions and singular integral operators. The text is intended for researchers, graduate students, and industry professionals interested in harmonic analysis, functional analysis, geometric measure theory, and function space theory..
出版日期Book 2022
關(guān)鍵詞Divergence theorem; integration by parts; Stokes theorem; singular integral operators; function spaces; b
版次1
doihttps://doi.org/10.1007/978-3-031-13718-1
isbn_softcover978-3-031-13720-4
isbn_ebook978-3-031-13718-1Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Harmonic Analysis II影響因子(影響力)




書目名稱Geometric Harmonic Analysis II影響因子(影響力)學科排名




書目名稱Geometric Harmonic Analysis II網(wǎng)絡(luò)公開度




書目名稱Geometric Harmonic Analysis II網(wǎng)絡(luò)公開度學科排名




書目名稱Geometric Harmonic Analysis II被引頻次




書目名稱Geometric Harmonic Analysis II被引頻次學科排名




書目名稱Geometric Harmonic Analysis II年度引用




書目名稱Geometric Harmonic Analysis II年度引用學科排名




書目名稱Geometric Harmonic Analysis II讀者反饋




書目名稱Geometric Harmonic Analysis II讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:30:45 | 只看該作者
Hardy Spaces on Ahlfors Regular Sets,he usefulness and versatility of a brand of Hardy spaces which places minimal regularity and structural demands on the underlying space. Here we are concerned with Hardy spaces on Ahlfors regular subsets of the Euclidean ambient and, by further building on the work in [9], consider topics such as th
地板
發(fā)表于 2025-3-22 05:46:17 | 只看該作者
5#
發(fā)表于 2025-3-22 09:16:01 | 只看該作者
Morrey-Campanato Spaces, Morrey Spaces, and Their Pre-Duals on Ahlfors Regular Sets,ces (cf., e.g., [2],?[6],?[63],?[117],?[155],?[157],?[184] and the references therein). The goal here is to develop a theory for these scales of spaces, which is comparable in scope and power to its Euclidean counterpart, in more general geometric settings. To set the stage, throughout we let . (whe
6#
發(fā)表于 2025-3-22 15:24:24 | 只看該作者
Besov and Triebel-Lizorkin Spaces on Ahlfors Regular Sets,Euclidean setting. Here we are concerned with adaptations of these scales of spaces to more general ambients, which only enjoy but a small fraction of the structural richness of the Euclidean space. This is in line with efforts made in the direction of extending the standard theory of Besov and Trie
7#
發(fā)表于 2025-3-22 20:46:48 | 只看該作者
Boundary Traces from Weighted Sobolev Spaces into Besov Spaces,Next, in §., we consider traces from weighted Sobolev spaces defined in a given .-domain . by relying on P.?Jones’ extension theorem to reduce matters to the full Euclidean setting considered earlier. The next order of business is to construct extension operators from boundary Besov spaces into our
8#
發(fā)表于 2025-3-22 22:47:07 | 只看該作者
9#
發(fā)表于 2025-3-23 02:28:28 | 只看該作者
Sobolev Spaces on the Geometric Measure Theoretic Boundary of Sets of Locally Finite Perimeter,ein), here the goal is to introduce a scale of Sobolev spaces on the geometric measure theoretic boundaries of sets of locally finite perimeter in the Euclidean setting and on Riemannian manifolds. This builds and expands on the work in [97],?[139], and?[141]. Our brand of “boundary” Sobolev spaces
10#
發(fā)表于 2025-3-23 05:37:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
藁城市| 祁东县| 来凤县| 改则县| 太湖县| 城口县| 仪征市| 昌乐县| 大安市| 庆元县| 江油市| 宁都县| 尚义县| 绍兴县| 宣化县| 贵定县| 上饶市| 大安市| 长海县| 民和| 新蔡县| 富源县| 虎林市| 马尔康县| 德清县| 临桂县| 墨脱县| 山丹县| 灯塔市| 桃源县| 福泉市| 仁怀市| 黔西| 太仆寺旗| 建始县| 日照市| 辉南县| 邵阳县| 弥渡县| 司法| 承德市|