找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Group Theory; An Introduction Clara L?h Textbook 2017 Springer International Publishing AG 2017 MSC 2010 20F65 20F67 20F69 20F05

[復(fù)制鏈接]
查看: 41805|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:19:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Group Theory
副標(biāo)題An Introduction
編輯Clara L?h
視頻videohttp://file.papertrans.cn/384/383517/383517.mp4
概述Features more than 250 exercises of varying difficulty including programming tasks.Introduces the key notions from quasi-geometry, such as growth, hyperbolicity, boundary constructions and amenability
叢書名稱Universitext
圖書封面Titlebook: Geometric Group Theory; An Introduction Clara L?h Textbook 2017 Springer International Publishing AG 2017 MSC 2010 20F65 20F67 20F69 20F05
描述.Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology...Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability...This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises..
出版日期Textbook 2017
關(guān)鍵詞MSC 2010 20F65 20F67 20F69 20F05 20F10 20E08 20E05 20E06; geometric group theory; group actions and ge
版次1
doihttps://doi.org/10.1007/978-3-319-72254-2
isbn_softcover978-3-319-72253-5
isbn_ebook978-3-319-72254-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Geometric Group Theory影響因子(影響力)




書目名稱Geometric Group Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Group Theory網(wǎng)絡(luò)公開度




書目名稱Geometric Group Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Group Theory被引頻次




書目名稱Geometric Group Theory被引頻次學(xué)科排名




書目名稱Geometric Group Theory年度引用




書目名稱Geometric Group Theory年度引用學(xué)科排名




書目名稱Geometric Group Theory讀者反饋




書目名稱Geometric Group Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:41:08 | 只看該作者
地板
發(fā)表于 2025-3-22 04:59:43 | 只看該作者
5#
發(fā)表于 2025-3-22 09:20:17 | 只看該作者
6#
發(fā)表于 2025-3-22 15:04:16 | 只看該作者
Drought Stress Tolerance in Plants, Vol 1Groups are an abstract concept from algebra, formalising the study of symmetries of various mathematical objects.
7#
發(fā)表于 2025-3-22 17:06:44 | 只看該作者
https://doi.org/10.1007/b110045A fundamental question of geometric group theory is how groups can be viewed as geometric objects; one way to view a (finitely generated) group as a geometric object is via Cayley graphs:
8#
發(fā)表于 2025-3-23 00:06:10 | 只看該作者
https://doi.org/10.1007/978-3-642-58474-9The first quasi-isometry invariant we discuss in detail is the growth type. We essentially measure the “volume” of balls in a given finitely generated group and study the asymptotic behaviour when the radius tends to infinity.
9#
發(fā)表于 2025-3-23 03:31:08 | 只看該作者
Werner Baumann,Bettina Herberg-LiedtkeIn the universe of groups (Figure 1.2), on the side opposite to Abelian, nilpotent, solvable, and amenable groups, we find free groups, and then further out, negatively curved groups. This chapter is devoted to negatively curved groups.
10#
發(fā)表于 2025-3-23 05:50:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思南县| 应城市| 盐山县| 徐闻县| 南澳县| 兴隆县| 堆龙德庆县| 壶关县| 江永县| 铁岭市| 澄迈县| 潜山县| 乐亭县| 田阳县| 海林市| 淮滨县| 克什克腾旗| 平遥县| 井冈山市| 塔城市| 平舆县| 城固县| 松江区| 兴山县| 阜康市| 靖宇县| 松阳县| 贵州省| 怀来县| 云安县| 大邑县| 射阳县| 西峡县| 曲沃县| 黑水县| 南平市| 启东市| 峨山| 成安县| 建始县| 盐亭县|