找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
51#
發(fā)表于 2025-3-30 09:15:51 | 只看該作者
Additional Remoting Techniques,and all . . Our bound is optimal, up to the value of the universal constant. It improves slightly upon the results of the first named author and Koldobsky, which included a doubly-logarithmic error. The proof is based on an efficient way of discretizing the unit sphere.
52#
發(fā)表于 2025-3-30 12:25:17 | 只看該作者
53#
發(fā)表于 2025-3-30 19:32:04 | 只看該作者
Keitarou Naruse,Yukinori Kakazuquence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volume sequence with maximum entropy.
54#
發(fā)表于 2025-3-30 21:23:14 | 只看該作者
Distributed Autonomous Robotic Systems 2nicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.
55#
發(fā)表于 2025-3-31 03:05:28 | 只看該作者
Experiment of Self-repairing Modular Machineric random variable that has variance 1, let Γ?=?(..) be an .?×?. random matrix whose entries are independent copies of ., and set .., …, .. to be the rows of Γ. Then under minimal assumptions on . and as long as .?≥?.., with high probability
56#
發(fā)表于 2025-3-31 06:41:46 | 只看該作者
57#
發(fā)表于 2025-3-31 11:37:03 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
礼泉县| 池州市| 怀柔区| 梁山县| 来宾市| 黄龙县| 甘肃省| 稷山县| 台北县| 彰武县| 鄂伦春自治旗| 乐山市| 开封市| 平原县| 嘉荫县| 佛山市| 沁阳市| 昭苏县| 昌都县| 奉节县| 建始县| 定兴县| 涟源市| 喀喇沁旗| 马公市| 静乐县| 大渡口区| 从化市| 贵港市| 遵化市| 瑞丽市| 密山市| 临高县| 嫩江县| 天门市| 陆河县| 汤原县| 五原县| 获嘉县| 连江县| 饶平县|