找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
31#
發(fā)表于 2025-3-26 21:30:26 | 只看該作者
Moments of the Distance Between Independent Random Vectors,We derive various sharp bounds on moments of the distance between two independent random vectors taking values in a Banach space.
32#
發(fā)表于 2025-3-27 03:41:48 | 只看該作者
33#
發(fā)表于 2025-3-27 07:28:44 | 只看該作者
34#
發(fā)表于 2025-3-27 09:54:12 | 只看該作者
Polylog Dimensional Subspaces of ,,We show that a subspace of . of dimension . contains 2-isomorphic copies of . where . tends to infinity with . .. More precisely, for every .?>?0, we show that any subspace of . of dimension . contains a subspace of dimension . of distance at most 1?+?. from ..
35#
發(fā)表于 2025-3-27 14:51:02 | 只看該作者
On a Formula for the Volume of Polytopes,We carry out an elementary proof of a formula for the volume of polytopes, due to A. Esterov, from which it follows that the mixed volume of polytopes depends only on the product of their support functions.
36#
發(fā)表于 2025-3-27 19:58:45 | 只看該作者
Besonderheiten beim Kauf aus der Insolvenztion is close to a Gaussian, with the quantitative difference determined asymptotically by the Cheeger/Poincare/KLS constant. Here we propose a generalized CLT for marginals along random directions drawn from any isotropic log-concave distribution; namely, for ., . drawn independently from isotropic
37#
發(fā)表于 2025-3-28 00:12:58 | 只看該作者
38#
發(fā)表于 2025-3-28 02:47:57 | 只看該作者
Understanding XML Web Services,uncorrelated coordinates. Our bounds are exact up to multiplicative universal constants in the unconditional case for all . and in the isotropic case for .?≤?.???... We also derive two-sided estimates for expectations of sums of . largest moduli of coordinates for some classes of random vectors.
39#
發(fā)表于 2025-3-28 08:09:06 | 只看該作者
Asynchronous Distributed CheckpointingBobkov and Chistyakov (IEEE Trans Inform Theory 61(2):708–714, 2015) fails when the Rényi parameter .?∈?(0, 1), we show that random vectors with .-concave densities do satisfy such a Rényi entropy power inequality. Along the way, we establish the convergence in the Central Limit Theorem for Rényi en
40#
發(fā)表于 2025-3-28 13:19:56 | 只看該作者
Graph Theory and?Attitude Representations satisfies the small ball probability estimate . where .?>?0 may only depend on the sub-Gaussian moment. Although the estimate can be obtained as a combination of known results and techniques, it was not noticed in the literature before. As a key step of the proof, we apply estimates for the singula
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台前县| 巨鹿县| 仪陇县| 黄冈市| 措美县| 图们市| 泰顺县| 乌审旗| 聊城市| 延吉市| 资中县| 淳化县| 舞阳县| 台湾省| 大丰市| 梁河县| 通山县| 翼城县| 冕宁县| 友谊县| 新津县| 肇源县| 商南县| 泰州市| 八宿县| 虞城县| 黎城县| 达孜县| 西安市| 修水县| 博客| 宜阳县| 视频| 迭部县| 静安区| 南澳县| 甘泉县| 开原市| 汉寿县| 南开区| 金寨县|