找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V

[復制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 09:58:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:38 | 只看該作者
https://doi.org/10.1007/978-3-322-82354-0 of the polytopes associated with these problems. We indicate how these results can be employed to derive polynomial time algorithms based on the ellipsoid method and basis reduction. The results of this chapter are presented in a condensed form, to cover as much material as possible.
13#
發(fā)表于 2025-3-23 21:04:39 | 只看該作者
Complexity, Oracles, and Numerical Computation,rk in which algorithms are designed and analysed in this book. We intend to stay on a more or less informal level; nevertheless, all notions introduced here can be made completely precise — see for instance ., . and . (1974), . and . (1979).
14#
發(fā)表于 2025-3-24 01:44:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:25 | 只看該作者
Combinatorial Optimization: Some Basic Examples,tion problems are formulated as linear programs. Chapter 8 contains a comprehensive survey of combinatorial problems to which these methods apply. Finally, in the last two chapters we discuss some more advanced examples in greater detail.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:01 | 只看該作者
Geometric Algorithms and Combinatorial Optimization
18#
發(fā)表于 2025-3-24 17:21:29 | 只看該作者
Martin Gr?tschel,László Lovász,Alexander Schrijver
19#
發(fā)表于 2025-3-24 19:07:36 | 只看該作者
Stable Sets in Graphs, classes of graphs which are in fact characterized by such a condition, most notably the class of perfect graphs. Using this approach, we shall develop a polynomial time algorithm for the stable set problem for perfect graphs. So far no purely combinatorial algorithm has been found to solve this pro
20#
發(fā)表于 2025-3-24 23:27:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新乡县| 京山县| 托克逊县| 旬阳县| 新丰县| 浦江县| 姜堰市| 左权县| 南投市| 舞钢市| 大埔区| 炉霍县| 杂多县| 黔江区| 榕江县| 青田县| 丁青县| 汉中市| 永城市| 裕民县| 包头市| 南城县| 英山县| 仙桃市| 铜鼓县| 饶河县| 黔东| 东城区| 连江县| 文昌市| 安丘市| 枞阳县| 宁化县| 克什克腾旗| 安陆市| 抚顺市| 新化县| 崇阳县| 沽源县| 抚顺市| 绿春县|