找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V

[復(fù)制鏈接]
查看: 43723|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:28:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometric Algorithms and Combinatorial Optimization
編輯Martin Gr?tschel,László Lovász,Alexander Schrijver
視頻videohttp://file.papertrans.cn/384/383444/383444.mp4
叢書(shū)名稱Algorithms and Combinatorics
圖書(shū)封面Titlebook: Geometric Algorithms and Combinatorial Optimization;  Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V
描述Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the su
出版日期Book 1993Latest edition
關(guān)鍵詞Basis Reduction in Lattices; Basisreduktion bei Gittern; Convexity; Ellipsoid Method; Ellipsoidmethode; K
版次2
doihttps://doi.org/10.1007/978-3-642-78240-4
isbn_softcover978-3-642-78242-8
isbn_ebook978-3-642-78240-4Series ISSN 0937-5511 Series E-ISSN 2197-6783
issn_series 0937-5511
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

書(shū)目名稱Geometric Algorithms and Combinatorial Optimization影響因子(影響力)




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization被引頻次




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization被引頻次學(xué)科排名




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization年度引用




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization年度引用學(xué)科排名




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization讀者反饋




書(shū)目名稱Geometric Algorithms and Combinatorial Optimization讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:19:01 | 只看該作者
Diophantine Approximation and Basis Reduction,simultaneous diophantine approximation, i. e., the problem of approximating a set of real numbers by rational numbers with a common small denominator. We offer an algorithmic study of lattices and diophantine approximation.
地板
發(fā)表于 2025-3-22 07:26:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:58:04 | 只看該作者
0937-5511 st pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of
6#
發(fā)表于 2025-3-22 16:49:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:12:16 | 只看該作者
8#
發(fā)表于 2025-3-23 00:08:11 | 只看該作者
9#
發(fā)表于 2025-3-23 01:45:31 | 只看該作者
10#
發(fā)表于 2025-3-23 07:17:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉萨市| 林周县| 永新县| 琼中| 察哈| 荃湾区| 陆川县| 榆树市| 宜川县| 丽水市| 同仁县| 石棉县| 井冈山市| 新巴尔虎右旗| 苍梧县| 阿巴嘎旗| 玛多县| 南召县| 出国| 苍山县| 梁河县| 龙江县| 九龙坡区| 江阴市| 深水埗区| 保定市| 错那县| 成武县| 广元市| 无极县| 邵阳市| 米泉市| 准格尔旗| 中江县| 和田市| 嫩江县| 邵东县| 许昌市| 武川县| 汶上县| 华安县|