找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Connectivity of Graphs; Xueliang Li,Yaping Mao Book 2016 The Author(s) 2016 Connectivity of Graphs.open problems.conjectures.r

[復(fù)制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 11:49:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:37 | 只看該作者
Maximum Generalized Local Connectivity,In this chapter, we introduce the results on the extremal problems of the generalized connectivity and generalized edge-connectivity.
13#
發(fā)表于 2025-3-23 20:45:11 | 只看該作者
Strategic Management and the Computer,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
14#
發(fā)表于 2025-3-23 22:29:09 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:50 | 只看該作者
N. Joglar,J.L. Risco,A. Díaz,J.M. Colmenar a positive integer ., the . is to determine sharp bounds for (1) . and (2) ., as . ranges over the class ., and characterize the extremal graphs. The Nordhaus-Gaddum-type relations have received wide attention; see a survey paper [.] by Aouchiche and Hansen.
16#
發(fā)表于 2025-3-24 08:08:26 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:12 | 只看該作者
Introduction,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
18#
發(fā)表于 2025-3-24 18:03:27 | 只看該作者
Algorithm and Complexity,e have seen in the last chapter, even for some very special graphs, it is very hard to get the exact values of their generalized .-connectivity for general .. A natural question is whether there is a polynomial-time algorithm to get the parameters ..(.) and .. In this chapter, we study the complexity of generalized connectivity.
19#
發(fā)表于 2025-3-24 21:57:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米易县| 牟定县| 广宗县| 兴义市| 丰原市| 龙门县| 格尔木市| 友谊县| 西昌市| 乡城县| 江孜县| 秭归县| 泰来县| 迁安市| 布尔津县| 汾西县| 博罗县| 安新县| 平凉市| 蓝山县| 肥东县| 阜平县| 即墨市| 顺平县| 常德市| 牡丹江市| 兰坪| 彩票| 宁阳县| 体育| 额尔古纳市| 宁强县| 宣汉县| 广水市| 岳普湖县| 青岛市| 商河县| 若尔盖县| 绍兴县| 安顺市| 宝鸡市|